Instances on PUnit #
This file collects facts about module structures on the one-element type
Equations
- PUnit.smul = { smul := fun (x : R) (x : PUnit.{?u.2 + 1} ) => PUnit.unit }
Equations
- PUnit.vadd = { vadd := fun (x : R) (x : PUnit.{?u.2 + 1} ) => PUnit.unit }
@[simp]
@[simp]
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- PUnit.smulWithZero = SMulWithZero.mk ⋯
Equations
- PUnit.mulAction = MulAction.mk ⋯ ⋯
Equations
- PUnit.distribMulAction = DistribMulAction.mk ⋯ ⋯
Equations
- PUnit.mulDistribMulAction = MulDistribMulAction.mk ⋯ ⋯
Equations
- PUnit.mulSemiringAction = MulSemiringAction.mk ⋯ ⋯
Equations
- PUnit.mulActionWithZero = MulActionWithZero.mk ⋯ ⋯
Equations
- PUnit.instSMul = { smul := fun (x : PUnit.{?u.2 + 1} ) (x : R) => x }
Equations
- PUnit.instVAdd = { vadd := fun (x : PUnit.{?u.2 + 1} ) (x : R) => x }
@[simp]
The one-element type acts trivially on every element.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- PUnit.instMulAction = MulAction.mk ⋯ ⋯
Equations
- PUnit.instSMulZeroClass = SMulZeroClass.mk ⋯
Equations
- PUnit.instDistribMulAction = DistribMulAction.mk ⋯ ⋯