Documentation

Mathlib.Algebra.Polynomial.Degree.Domain

Univariate polynomials form a domain #

Main results #

theorem Polynomial.natDegree_mul {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (hp : p 0) (hq : q 0) :
(p * q).natDegree = p.natDegree + q.natDegree
theorem Polynomial.natDegree_smul {R : Type u} {a : R} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (ha : a 0) :
(a p).natDegree = p.natDegree
@[simp]
theorem Polynomial.natDegree_pow {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (n : ) :
(p ^ n).natDegree = n * p.natDegree
theorem Polynomial.natDegree_le_of_dvd {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (h1 : p q) (h2 : q 0) :
p.natDegree q.natDegree
theorem Polynomial.degree_le_of_dvd {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (h1 : p q) (h2 : q 0) :
p.degree q.degree
theorem Polynomial.eq_zero_of_dvd_of_degree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (h₁ : p q) (h₂ : q.degree < p.degree) :
q = 0
theorem Polynomial.eq_zero_of_dvd_of_natDegree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (h₁ : p q) (h₂ : q.natDegree < p.natDegree) :
q = 0
theorem Polynomial.not_dvd_of_degree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (h0 : q 0) (hl : q.degree < p.degree) :
¬p q
theorem Polynomial.not_dvd_of_natDegree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p q : Polynomial R} (h0 : q 0) (hl : q.natDegree < p.natDegree) :
¬p q
theorem Polynomial.natDegree_sub_eq_of_prod_eq {R : Type u} [Semiring R] [NoZeroDivisors R] {p₁ p₂ q₁ q₂ : Polynomial R} (hp₁ : p₁ 0) (hq₁ : q₁ 0) (hp₂ : p₂ 0) (hq₂ : q₂ 0) (h_eq : p₁ * q₂ = p₂ * q₁) :
p₁.natDegree - q₁.natDegree = p₂.natDegree - q₂.natDegree

This lemma is useful for working with the intDegree of a rational function.