Results on polynomials of specific small degrees #
theorem
Polynomial.eq_X_add_C_of_degree_le_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.degree ≤ 1)
:
theorem
Polynomial.eq_X_add_C_of_degree_eq_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.degree = 1)
:
theorem
Polynomial.eq_X_add_C_of_natDegree_le_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.natDegree ≤ 1)
:
theorem
Polynomial.Monic.eq_X_add_C
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hm : p.Monic)
(hnd : p.natDegree = 1)
:
theorem
Polynomial.exists_eq_X_add_C_of_natDegree_le_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.natDegree ≤ 1)
:
theorem
Polynomial.ne_zero_of_coe_le_degree
{R : Type u}
{n : ℕ}
[Semiring R]
{p : Polynomial R}
(hdeg : ↑n ≤ p.degree)
:
p ≠ 0
theorem
Polynomial.le_natDegree_of_coe_le_degree
{R : Type u}
{n : ℕ}
[Semiring R]
{p : Polynomial R}
(hdeg : ↑n ≤ p.degree)
:
n ≤ p.natDegree