Documentation

Mathlib.Algebra.Polynomial.Eval.SMul

Evaluating polynomials and scalar multiplication #

Main results #

@[simp]
theorem Polynomial.eval₂_smul {R : Type u} {S : Type v} [Semiring R] [Semiring S] (g : R →+* S) (p : Polynomial R) (x : S) {s : R} :
eval₂ g x (s p) = g s * eval₂ g x p
@[simp]
theorem Polynomial.eval_smul {R : Type u} {S : Type v} [Semiring R] [Monoid S] [DistribMulAction S R] [IsScalarTower S R R] (s : S) (p : Polynomial R) (x : R) :
eval x (s p) = s eval x p
def Polynomial.leval {R : Type u_1} [Semiring R] (r : R) :

Polynomial.eval as linear map

Equations
Instances For
    @[simp]
    theorem Polynomial.leval_apply {R : Type u_1} [Semiring R] (r : R) (f : Polynomial R) :
    (leval r) f = eval r f
    @[simp]
    theorem Polynomial.smul_comp {R : Type u} {S : Type v} [Semiring R] [Monoid S] [DistribMulAction S R] [IsScalarTower S R R] (s : S) (p q : Polynomial R) :
    (s p).comp q = s p.comp q
    @[simp]
    theorem Polynomial.map_smul {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (r : R) :
    map f (r p) = f r map f p