Documentation
Mathlib
.
Algebra
.
Polynomial
.
Monomial
Search
return to top
source
Imports
Init
Mathlib.Algebra.Polynomial.Basic
Imported by
Polynomial
.
monomial_one_eq_iff
Polynomial
.
infinite
Polynomial
.
card_support_le_one_iff_monomial
Polynomial
.
ringHom_ext
Polynomial
.
ringHom_ext'
Univariate monomials
#
Preparatory lemmas for degree_basic.
source
theorem
Polynomial
.
monomial_one_eq_iff
{R :
Type
u}
[
Semiring
R
]
[
Nontrivial
R
]
{i j :
ℕ
}
:
(
monomial
i
)
1
=
(
monomial
j
)
1
↔
i
=
j
source
instance
Polynomial
.
infinite
{R :
Type
u}
[
Semiring
R
]
[
Nontrivial
R
]
:
Infinite
(
Polynomial
R
)
source
theorem
Polynomial
.
card_support_le_one_iff_monomial
{R :
Type
u}
[
Semiring
R
]
{f :
Polynomial
R
}
:
f
.support
.card
≤
1
↔
∃ (
n
:
ℕ
) (
a
:
R
),
f
=
(
monomial
n
)
a
source
theorem
Polynomial
.
ringHom_ext
{R :
Type
u}
[
Semiring
R
]
{S :
Type
u_1}
[
Semiring
S
]
{f g :
Polynomial
R
→+*
S
}
(h₁ :
∀ (
a
:
R
),
f
(
C
a
)
=
g
(
C
a
)
)
(h₂ :
f
X
=
g
X
)
:
f
=
g
source
theorem
Polynomial
.
ringHom_ext'
{R :
Type
u}
[
Semiring
R
]
{S :
Type
u_1}
[
Semiring
S
]
{f g :
Polynomial
R
→+*
S
}
(h₁ :
f
.comp
C
=
g
.comp
C
)
(h₂ :
f
X
=
g
X
)
:
f
=
g