Documentation

Mathlib.Algebra.Regular.Opposite

Results about IsRegular and MulOpposite #

@[simp]
@[simp]
@[simp]
theorem isRegular_op {R : Type u_1} [Mul R] {a : R} :
@[simp]
theorem isAddRegular_op {R : Type u_1} [Add R] {a : R} :
theorem IsLeftRegular.op {R : Type u_1} [Mul R] {a : R} :

Alias of the reverse direction of isLeftRegular_op.

theorem IsRightRegular.op {R : Type u_1} [Mul R] {a : R} :

Alias of the reverse direction of isRightRegular_op.

theorem IsRegular.op {R : Type u_1} [Mul R] {a : R} :

Alias of the reverse direction of isRegular_op.

theorem IsAddRegular.op {R : Type u_1} [Add R] {a : R} :
@[simp]

Alias of the reverse direction of isLeftRegular_unop.

Alias of the reverse direction of isRightRegular_unop.

theorem IsRegular.unop {R : Type u_1} [Mul R] {a : Rᵐᵒᵖ} :

Alias of the reverse direction of isRegular_unop.