Documentation

Mathlib.Algebra.Regular.Pi

Results about IsRegular and pi types #

@[simp]
theorem Pi.isLeftRegular_iff {ι : Type u_1} {R : ιType u_3} [(i : ι) → Mul (R i)] {a : (i : ι) → R i} :
IsLeftRegular a ∀ (i : ι), IsLeftRegular (a i)
@[simp]
theorem Pi.isAddLeftRegular_iff {ι : Type u_1} {R : ιType u_3} [(i : ι) → Add (R i)] {a : (i : ι) → R i} :
IsAddLeftRegular a ∀ (i : ι), IsAddLeftRegular (a i)
@[simp]
theorem Pi.isRightRegular_iff {ι : Type u_1} {R : ιType u_3} [(i : ι) → Mul (R i)] {a : (i : ι) → R i} :
IsRightRegular a ∀ (i : ι), IsRightRegular (a i)
@[simp]
theorem Pi.isAddRightRegular_iff {ι : Type u_1} {R : ιType u_3} [(i : ι) → Add (R i)] {a : (i : ι) → R i} :
@[simp]
theorem Pi.isRegular_iff {ι : Type u_1} {R : ιType u_3} [(i : ι) → Mul (R i)] {a : (i : ι) → R i} :
IsRegular a ∀ (i : ι), IsRegular (a i)
@[simp]
theorem Pi.isAddRegular_iff {ι : Type u_1} {R : ιType u_3} [(i : ι) → Add (R i)] {a : (i : ι) → R i} :
IsAddRegular a ∀ (i : ι), IsAddRegular (a i)
@[simp]
theorem Pi.isSMulRegular_iff {ι : Type u_1} {α : Type u_2} {R : ιType u_3} [(i : ι) → SMul α (R i)] {r : α} [∀ (i : ι), Nonempty (R i)] :
IsSMulRegular ((i : ι) → R i) r ∀ (i : ι), IsSMulRegular (R i) r