@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
IsLeftRegular.prodMk
{R : Type u_2}
{S : Type u_3}
[Mul R]
[Mul S]
{a : R}
{b : S}
(ha : IsLeftRegular a)
(hb : IsLeftRegular b)
:
IsLeftRegular (a, b)
theorem
IsAddLeftRegular.sumMk
{R : Type u_2}
{S : Type u_3}
[Add R]
[Add S]
{a : R}
{b : S}
(ha : IsAddLeftRegular a)
(hb : IsAddLeftRegular b)
:
theorem
IsRightRegular.prodMk
{R : Type u_2}
{S : Type u_3}
[Mul R]
[Mul S]
{a : R}
{b : S}
(ha : IsRightRegular a)
(hb : IsRightRegular b)
:
theorem
IsAddRightRegular.sumMk
{R : Type u_2}
{S : Type u_3}
[Add R]
[Add S]
{a : R}
{b : S}
(ha : IsAddRightRegular a)
(hb : IsAddRightRegular b)
:
theorem
IsAddRegular.sumMk
{R : Type u_2}
{S : Type u_3}
[Add R]
[Add S]
{a : R}
{b : S}
(ha : IsAddRegular a)
(hb : IsAddRegular b)
:
IsAddRegular (a, b)