Documentation

Mathlib.Algebra.Regular.ULift

Results about IsRegular and ULift #

@[simp]
theorem ULift.isLeftRegular_up {R : Type v} [Mul R] {a : R} :
@[simp]
theorem ULift.isAddLeftRegular_up {R : Type v} [Add R] {a : R} :
@[simp]
theorem ULift.isRightRegular_up {R : Type v} [Mul R] {a : R} :
@[simp]
theorem ULift.isAddRightRegular_up {R : Type v} [Add R] {a : R} :
@[simp]
theorem ULift.isRegular_up {R : Type v} [Mul R] {a : R} :
IsRegular { down := a } IsRegular a
@[simp]
theorem ULift.isAddRegular_up {R : Type v} [Add R] {a : R} :
@[simp]
@[simp]
theorem ULift.isSMulRegular_iff {α : Type u_1} {R : Type v} [SMul α R] {r : α} :