Documentation
Mathlib
.
Algebra
.
Regular
.
ULift
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.ULift
Mathlib.Algebra.Regular.Basic
Mathlib.Algebra.Regular.SMul
Imported by
ULift
.
isLeftRegular_up
ULift
.
isAddLeftRegular_up
ULift
.
isRightRegular_up
ULift
.
isAddRightRegular_up
ULift
.
isRegular_up
ULift
.
isAddRegular_up
ULift
.
isLeftRegular_down
ULift
.
isAddLeftRegular_down
ULift
.
isRightRegular_down
ULift
.
isAddRightRegular_down
ULift
.
isRegular_down
ULift
.
isAddRegular_down
ULift
.
isSMulRegular_iff
Results about
IsRegular
and
ULift
#
source
@[simp]
theorem
ULift
.
isLeftRegular_up
{
R
:
Type
v}
[
Mul
R
]
{
a
:
R
}
:
IsLeftRegular
{
down
:=
a
}
↔
IsLeftRegular
a
source
@[simp]
theorem
ULift
.
isAddLeftRegular_up
{
R
:
Type
v}
[
Add
R
]
{
a
:
R
}
:
IsAddLeftRegular
{
down
:=
a
}
↔
IsAddLeftRegular
a
source
@[simp]
theorem
ULift
.
isRightRegular_up
{
R
:
Type
v}
[
Mul
R
]
{
a
:
R
}
:
IsRightRegular
{
down
:=
a
}
↔
IsRightRegular
a
source
@[simp]
theorem
ULift
.
isAddRightRegular_up
{
R
:
Type
v}
[
Add
R
]
{
a
:
R
}
:
IsAddRightRegular
{
down
:=
a
}
↔
IsAddRightRegular
a
source
@[simp]
theorem
ULift
.
isRegular_up
{
R
:
Type
v}
[
Mul
R
]
{
a
:
R
}
:
IsRegular
{
down
:=
a
}
↔
IsRegular
a
source
@[simp]
theorem
ULift
.
isAddRegular_up
{
R
:
Type
v}
[
Add
R
]
{
a
:
R
}
:
IsAddRegular
{
down
:=
a
}
↔
IsAddRegular
a
source
@[simp]
theorem
ULift
.
isLeftRegular_down
{
R
:
Type
v}
[
Mul
R
]
{
a
:
ULift.{u, v}
R
}
:
IsLeftRegular
a
.
down
↔
IsLeftRegular
a
source
@[simp]
theorem
ULift
.
isAddLeftRegular_down
{
R
:
Type
v}
[
Add
R
]
{
a
:
ULift.{u, v}
R
}
:
IsAddLeftRegular
a
.
down
↔
IsAddLeftRegular
a
source
@[simp]
theorem
ULift
.
isRightRegular_down
{
R
:
Type
v}
[
Mul
R
]
{
a
:
ULift.{u, v}
R
}
:
IsRightRegular
a
.
down
↔
IsRightRegular
a
source
@[simp]
theorem
ULift
.
isAddRightRegular_down
{
R
:
Type
v}
[
Add
R
]
{
a
:
ULift.{u, v}
R
}
:
IsAddRightRegular
a
.
down
↔
IsAddRightRegular
a
source
@[simp]
theorem
ULift
.
isRegular_down
{
R
:
Type
v}
[
Mul
R
]
{
a
:
ULift.{u, v}
R
}
:
IsRegular
a
.
down
↔
IsRegular
a
source
@[simp]
theorem
ULift
.
isAddRegular_down
{
R
:
Type
v}
[
Add
R
]
{
a
:
ULift.{u, v}
R
}
:
IsAddRegular
a
.
down
↔
IsAddRegular
a
source
@[simp]
theorem
ULift
.
isSMulRegular_iff
{
α
:
Type
u_1}
{
R
:
Type
v}
[
SMul
α
R
]
{
r
:
α
}
:
IsSMulRegular
(
ULift.{u_2, v}
R
)
r
↔
IsSMulRegular
R
r