Documentation

Mathlib.Algebra.Ring.Action.Pointwise.Set

Pointwise operations of sets in a ring #

This file proves properties of pointwise operations of sets in a ring.

Tags #

set multiplication, set addition, pointwise addition, pointwise multiplication, pointwise subtraction

@[simp]
theorem Set.smul_set_neg {α : Type u_1} {β : Type u_2} [Monoid α] [AddGroup β] [DistribMulAction α β] (a : α) (t : Set β) :
a -t = -(a t)
@[simp]
theorem Set.smul_neg {α : Type u_1} {β : Type u_2} [Monoid α] [AddGroup β] [DistribMulAction α β] (s : Set α) (t : Set β) :
s -t = -(s t)
theorem Set.add_smul_subset {α : Type u_1} {β : Type u_2} [Semiring α] [AddCommMonoid β] [Module α β] (a b : α) (s : Set β) :
(a + b) s a s + b s
theorem Set.zero_mem_smul_set_iff {α : Type u_1} {β : Type u_2} [Semiring α] [AddCommMonoid β] [Module α β] [IsDomain α] [Module.IsTorsionFree α β] {a : α} {t : Set β} (ha : a 0) :
0 a t 0 t
theorem Set.zero_mem_smul_iff {α : Type u_1} {β : Type u_2} [Semiring α] [AddCommMonoid β] [Module α β] [IsDomain α] [Module.IsTorsionFree α β] {s : Set α} {t : Set β} :
0 s t 0 s t.Nonempty 0 t s.Nonempty
@[simp]
theorem Set.neg_smul_set {α : Type u_1} {β : Type u_2} [Ring α] [AddCommGroup β] [Module α β] (a : α) (t : Set β) :
-a t = -(a t)
@[simp]
theorem Set.neg_smul {α : Type u_1} {β : Type u_2} [Ring α] [AddCommGroup β] [Module α β] (s : Set α) (t : Set β) :
-s t = -(s t)