The subgroup of fixed points of an action #
def
FixedPoints.addSubmonoid
(M : Type u_1)
(α : Type u_2)
[Monoid M]
[AddMonoid α]
[DistribMulAction M α]
:
The additive submonoid of elements fixed under the whole action.
Equations
- FixedPoints.addSubmonoid M α = { carrier := MulAction.fixedPoints M α, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
@[simp]
theorem
FixedPoints.mem_addSubmonoid
(M : Type u_1)
(α : Type u_2)
[Monoid M]
[AddMonoid α]
[DistribMulAction M α]
(a : α)
:
def
FixedPoints.addSubgroup
(M : Type u_1)
(α : Type u_2)
[Monoid M]
[AddGroup α]
[DistribMulAction M α]
:
The additive subgroup of elements fixed under the whole action.
Equations
- α^+M = { toAddSubmonoid := FixedPoints.addSubmonoid M α, neg_mem' := ⋯ }
Instances For
The notation for FixedPoints.addSubgroup
, chosen to resemble αᴹ
.
Equations
- «term_^+_» = Lean.ParserDescr.trailingNode `«term_^+_» 1022 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^+") (Lean.ParserDescr.cat `term 51))
Instances For
@[simp]
theorem
FixedPoints.addSubgroup_toAddSubmonoid
(M : Type u_1)
(α : Type u_2)
[Monoid M]
[AddGroup α]
[DistribMulAction M α]
: