Documentation

Mathlib.Algebra.Ring.Action.Submonoid

The subgroup of fixed points of an action #

def FixedPoints.addSubmonoid (M : Type u_1) (α : Type u_2) [Monoid M] [AddMonoid α] [DistribMulAction M α] :

The additive submonoid of elements fixed under the whole action.

Equations
Instances For
    @[simp]
    theorem FixedPoints.mem_addSubmonoid (M : Type u_1) (α : Type u_2) [Monoid M] [AddMonoid α] [DistribMulAction M α] (a : α) :
    a addSubmonoid M α ∀ (m : M), m a = a
    def FixedPoints.addSubgroup (M : Type u_1) (α : Type u_2) [Monoid M] [AddGroup α] [DistribMulAction M α] :

    The additive subgroup of elements fixed under the whole action.

    Equations
    Instances For

      The notation for FixedPoints.addSubgroup, chosen to resemble αᴹ.

      Equations
      Instances For
        @[simp]
        theorem FixedPoints.mem_addSubgroup (M : Type u_1) (α : Type u_2) [Monoid M] [AddGroup α] [DistribMulAction M α] (a : α) :
        a α^+M ∀ (m : M), m a = a