Documentation

Mathlib.Algebra.Ring.BooleanRing

Boolean rings #

A Boolean ring is a ring where multiplication is idempotent. They are equivalent to Boolean algebras.

Main declarations #

Implementation notes #

We provide two ways of turning a Boolean algebra/ring into a Boolean ring/algebra:

At this point in time, it is not clear the first way is useful, but we keep it for educational purposes and because it is easier than dealing with ofBoolAlg/toBoolAlg/ofBoolRing/toBoolRing explicitly.

Tags #

boolean ring, boolean algebra

class BooleanRing (α : Type u_4) extends Ring α :
Type u_4

A Boolean ring is a ring where multiplication is idempotent.

Instances
    theorem BooleanRing.mul_self {α : Type u_1} [BooleanRing α] (a : α) :
    a * a = a
    instance BooleanRing.instIdempotentOpHMul {α : Type u_1} [BooleanRing α] :
    Std.IdempotentOp fun (x1 x2 : α) => x1 * x2
    theorem BooleanRing.add_self {α : Type u_1} [BooleanRing α] (a : α) :
    a + a = 0
    theorem BooleanRing.neg_eq {α : Type u_1} [BooleanRing α] (a : α) :
    -a = a
    theorem BooleanRing.add_eq_zero' {α : Type u_1} [BooleanRing α] (a b : α) :
    a + b = 0 a = b
    @[simp]
    theorem BooleanRing.mul_add_mul {α : Type u_1} [BooleanRing α] (a b : α) :
    a * b + b * a = 0
    theorem BooleanRing.sub_eq_add {α : Type u_1} [BooleanRing α] (a b : α) :
    a - b = a + b
    @[simp]
    theorem BooleanRing.mul_one_add_self {α : Type u_1} [BooleanRing α] (a : α) :
    a * (1 + a) = 0
    @[instance 100]
    instance BooleanRing.toCommRing {α : Type u_1} [BooleanRing α] :
    Equations

    Turning a Boolean ring into a Boolean algebra #

    def AsBoolAlg (α : Type u_4) :
    Type u_4

    Type synonym to view a Boolean ring as a Boolean algebra.

    Equations
    Instances For
      def toBoolAlg {α : Type u_1} :

      The "identity" equivalence between AsBoolAlg α and α.

      Equations
      Instances For
        def ofBoolAlg {α : Type u_1} :

        The "identity" equivalence between α and AsBoolAlg α.

        Equations
        Instances For
          @[simp]
          theorem toBoolAlg_symm_eq {α : Type u_1} :
          @[simp]
          theorem ofBoolAlg_symm_eq {α : Type u_1} :
          @[simp]
          theorem toBoolAlg_ofBoolAlg {α : Type u_1} (a : AsBoolAlg α) :
          toBoolAlg (ofBoolAlg a) = a
          @[simp]
          theorem ofBoolAlg_toBoolAlg {α : Type u_1} (a : α) :
          ofBoolAlg (toBoolAlg a) = a
          theorem toBoolAlg_inj {α : Type u_1} {a b : α} :
          toBoolAlg a = toBoolAlg b a = b
          theorem ofBoolAlg_inj {α : Type u_1} {a b : AsBoolAlg α} :
          ofBoolAlg a = ofBoolAlg b a = b
          def BooleanRing.sup {α : Type u_1} [BooleanRing α] :
          Max α

          The join operation in a Boolean ring is x + y + x * y.

          Equations
          Instances For
            def BooleanRing.inf {α : Type u_1} [BooleanRing α] :
            Min α

            The meet operation in a Boolean ring is x * y.

            Equations
            Instances For
              theorem BooleanRing.sup_comm {α : Type u_1} [BooleanRing α] (a b : α) :
              a b = b a
              theorem BooleanRing.inf_comm {α : Type u_1} [BooleanRing α] (a b : α) :
              a b = b a
              theorem BooleanRing.sup_assoc {α : Type u_1} [BooleanRing α] (a b c : α) :
              a b c = a (b c)
              theorem BooleanRing.inf_assoc {α : Type u_1} [BooleanRing α] (a b c : α) :
              a b c = a (b c)
              theorem BooleanRing.sup_inf_self {α : Type u_1} [BooleanRing α] (a b : α) :
              a a b = a
              theorem BooleanRing.inf_sup_self {α : Type u_1} [BooleanRing α] (a b : α) :
              a (a b) = a
              theorem BooleanRing.le_sup_inf_aux {α : Type u_1} [BooleanRing α] (a b c : α) :
              (a + b + a * b) * (a + c + a * c) = a + b * c + a * (b * c)
              theorem BooleanRing.le_sup_inf {α : Type u_1} [BooleanRing α] (a b c : α) :
              (a b) (a c) (a b c) = a b c

              The Boolean algebra structure on a Boolean ring.

              The data is defined so that:

              • a ⊔ b unfolds to a + b + a * b
              • a ⊓ b unfolds to a * b
              • a ≤ b unfolds to a + b + a * b = b
              • unfolds to 0
              • unfolds to 1
              • aᶜ unfolds to 1 + a
              • a \ b unfolds to a * (1 + b)
              Equations
              Instances For
                @[simp]
                theorem ofBoolAlg_top {α : Type u_1} [BooleanRing α] :
                ofBoolAlg = 1
                @[simp]
                theorem ofBoolAlg_bot {α : Type u_1} [BooleanRing α] :
                ofBoolAlg = 0
                @[simp]
                theorem ofBoolAlg_sup {α : Type u_1} [BooleanRing α] (a b : AsBoolAlg α) :
                ofBoolAlg (a b) = ofBoolAlg a + ofBoolAlg b + ofBoolAlg a * ofBoolAlg b
                @[simp]
                theorem ofBoolAlg_inf {α : Type u_1} [BooleanRing α] (a b : AsBoolAlg α) :
                ofBoolAlg (a b) = ofBoolAlg a * ofBoolAlg b
                @[simp]
                theorem ofBoolAlg_compl {α : Type u_1} [BooleanRing α] (a : AsBoolAlg α) :
                ofBoolAlg a = 1 + ofBoolAlg a
                @[simp]
                theorem ofBoolAlg_sdiff {α : Type u_1} [BooleanRing α] (a b : AsBoolAlg α) :
                ofBoolAlg (a \ b) = ofBoolAlg a * (1 + ofBoolAlg b)
                @[simp]
                theorem ofBoolAlg_symmDiff {α : Type u_1} [BooleanRing α] (a b : AsBoolAlg α) :
                ofBoolAlg (symmDiff a b) = ofBoolAlg a + ofBoolAlg b
                @[simp]
                theorem ofBoolAlg_mul_ofBoolAlg_eq_left_iff {α : Type u_1} [BooleanRing α] {a b : AsBoolAlg α} :
                ofBoolAlg a * ofBoolAlg b = ofBoolAlg a a b
                @[simp]
                theorem toBoolAlg_zero {α : Type u_1} [BooleanRing α] :
                toBoolAlg 0 =
                @[simp]
                theorem toBoolAlg_one {α : Type u_1} [BooleanRing α] :
                toBoolAlg 1 =
                @[simp]
                theorem toBoolAlg_mul {α : Type u_1} [BooleanRing α] (a b : α) :
                toBoolAlg (a * b) = toBoolAlg a toBoolAlg b
                @[simp]
                theorem toBoolAlg_add_add_mul {α : Type u_1} [BooleanRing α] (a b : α) :
                toBoolAlg (a + b + a * b) = toBoolAlg a toBoolAlg b
                @[simp]
                theorem toBoolAlg_add {α : Type u_1} [BooleanRing α] (a b : α) :
                toBoolAlg (a + b) = symmDiff (toBoolAlg a) (toBoolAlg b)
                def RingHom.asBoolAlg {α : Type u_1} {β : Type u_2} [BooleanRing α] [BooleanRing β] (f : α →+* β) :

                Turn a ring homomorphism from Boolean rings α to β into a bounded lattice homomorphism from α to β considered as Boolean algebras.

                Equations
                • f.asBoolAlg = { toFun := toBoolAlg f ofBoolAlg, map_sup' := , map_inf' := , map_top' := , map_bot' := }
                Instances For
                  @[simp]
                  theorem RingHom.asBoolAlg_toLatticeHom_toSupHom_toFun {α : Type u_1} {β : Type u_2} [BooleanRing α] [BooleanRing β] (f : α →+* β) (a✝ : AsBoolAlg α) :
                  f.asBoolAlg.toSupHom a✝ = (toBoolAlg f ofBoolAlg) a✝
                  @[simp]
                  theorem RingHom.asBoolAlg_id {α : Type u_1} [BooleanRing α] :
                  (id α).asBoolAlg = BoundedLatticeHom.id (AsBoolAlg α)
                  @[simp]
                  theorem RingHom.asBoolAlg_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [BooleanRing α] [BooleanRing β] [BooleanRing γ] (g : β →+* γ) (f : α →+* β) :
                  (g.comp f).asBoolAlg = g.asBoolAlg.comp f.asBoolAlg

                  Turning a Boolean algebra into a Boolean ring #

                  def AsBoolRing (α : Type u_4) :
                  Type u_4

                  Type synonym to view a Boolean ring as a Boolean algebra.

                  Equations
                  Instances For
                    def toBoolRing {α : Type u_1} :

                    The "identity" equivalence between AsBoolRing α and α.

                    Equations
                    Instances For
                      def ofBoolRing {α : Type u_1} :

                      The "identity" equivalence between α and AsBoolRing α.

                      Equations
                      Instances For
                        @[simp]
                        theorem toBoolRing_symm_eq {α : Type u_1} :
                        @[simp]
                        theorem ofBoolRing_symm_eq {α : Type u_1} :
                        @[simp]
                        theorem toBoolRing_ofBoolRing {α : Type u_1} (a : AsBoolRing α) :
                        toBoolRing (ofBoolRing a) = a
                        @[simp]
                        theorem ofBoolRing_toBoolRing {α : Type u_1} (a : α) :
                        ofBoolRing (toBoolRing a) = a
                        theorem toBoolRing_inj {α : Type u_1} {a b : α} :
                        toBoolRing a = toBoolRing b a = b
                        theorem ofBoolRing_inj {α : Type u_1} {a b : AsBoolRing α} :
                        ofBoolRing a = ofBoolRing b a = b
                        @[reducible, inline]

                        Every generalized Boolean algebra has the structure of a non unital commutative ring with the following data:

                        • a + b unfolds to a ∆ b (symmetric difference)
                        • a * b unfolds to a ⊓ b
                        • -a unfolds to a
                        • 0 unfolds to
                        Equations
                        Instances For
                          @[reducible, inline]

                          Every Boolean algebra has the structure of a Boolean ring with the following data:

                          • a + b unfolds to a ∆ b (symmetric difference)
                          • a * b unfolds to a ⊓ b
                          • -a unfolds to a
                          • 0 unfolds to
                          • 1 unfolds to
                          Equations
                          Instances For
                            @[simp]
                            theorem ofBoolRing_zero {α : Type u_1} [BooleanAlgebra α] :
                            ofBoolRing 0 =
                            @[simp]
                            theorem ofBoolRing_one {α : Type u_1} [BooleanAlgebra α] :
                            ofBoolRing 1 =
                            @[simp]
                            theorem ofBoolRing_neg {α : Type u_1} [BooleanAlgebra α] (a : AsBoolRing α) :
                            ofBoolRing (-a) = ofBoolRing a
                            @[simp]
                            theorem ofBoolRing_add {α : Type u_1} [BooleanAlgebra α] (a b : AsBoolRing α) :
                            ofBoolRing (a + b) = symmDiff (ofBoolRing a) (ofBoolRing b)
                            @[simp]
                            theorem ofBoolRing_sub {α : Type u_1} [BooleanAlgebra α] (a b : AsBoolRing α) :
                            ofBoolRing (a - b) = symmDiff (ofBoolRing a) (ofBoolRing b)
                            @[simp]
                            theorem ofBoolRing_mul {α : Type u_1} [BooleanAlgebra α] (a b : AsBoolRing α) :
                            ofBoolRing (a * b) = ofBoolRing a ofBoolRing b
                            @[simp]
                            theorem ofBoolRing_le_ofBoolRing_iff {α : Type u_1} [BooleanAlgebra α] {a b : AsBoolRing α} :
                            ofBoolRing a ofBoolRing b a * b = a
                            @[simp]
                            theorem toBoolRing_bot {α : Type u_1} [BooleanAlgebra α] :
                            toBoolRing = 0
                            @[simp]
                            theorem toBoolRing_top {α : Type u_1} [BooleanAlgebra α] :
                            toBoolRing = 1
                            @[simp]
                            theorem toBoolRing_inf {α : Type u_1} [BooleanAlgebra α] (a b : α) :
                            toBoolRing (a b) = toBoolRing a * toBoolRing b
                            @[simp]
                            theorem toBoolRing_symmDiff {α : Type u_1} [BooleanAlgebra α] (a b : α) :
                            toBoolRing (symmDiff a b) = toBoolRing a + toBoolRing b

                            Turn a bounded lattice homomorphism from Boolean algebras α to β into a ring homomorphism from α to β considered as Boolean rings.

                            Equations
                            • f.asBoolRing = { toFun := toBoolRing f ofBoolRing, map_one' := , map_mul' := , map_zero' := , map_add' := }
                            Instances For
                              @[simp]
                              theorem BoundedLatticeHom.asBoolRing_apply {α : Type u_1} {β : Type u_2} [BooleanAlgebra α] [BooleanAlgebra β] (f : BoundedLatticeHom α β) (a✝ : AsBoolRing α) :
                              f.asBoolRing a✝ = (toBoolRing f ofBoolRing) a✝
                              @[simp]
                              theorem BoundedLatticeHom.asBoolRing_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [BooleanAlgebra α] [BooleanAlgebra β] [BooleanAlgebra γ] (g : BoundedLatticeHom β γ) (f : BoundedLatticeHom α β) :
                              (g.comp f).asBoolRing = g.asBoolRing.comp f.asBoolRing

                              Equivalence between Boolean rings and Boolean algebras #

                              Order isomorphism between α considered as a Boolean ring considered as a Boolean algebra and α.

                              Equations
                              Instances For
                                @[simp]
                                theorem OrderIso.asBoolAlgAsBoolRing_apply (α : Type u_4) [BooleanAlgebra α] (a✝ : AsBoolAlg (AsBoolRing α)) :
                                (asBoolAlgAsBoolRing α) a✝ = ofBoolRing (ofBoolAlg a✝)
                                @[simp]
                                theorem OrderIso.asBoolAlgAsBoolRing_symm_apply (α : Type u_4) [BooleanAlgebra α] (a✝ : α) :
                                (RelIso.symm (asBoolAlgAsBoolRing α)) a✝ = toBoolAlg (toBoolRing a✝)

                                Ring isomorphism between α considered as a Boolean algebra considered as a Boolean ring and α.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem RingEquiv.asBoolRingAsBoolAlg_apply (α : Type u_4) [BooleanRing α] (a✝ : AsBoolRing (AsBoolAlg α)) :
                                  (asBoolRingAsBoolAlg α) a✝ = ofBoolAlg (ofBoolRing a✝)
                                  @[simp]
                                  theorem RingEquiv.asBoolRingAsBoolAlg_symm_apply (α : Type u_4) [BooleanRing α] (a✝ : α) :
                                  (asBoolRingAsBoolAlg α).symm a✝ = toBoolRing (toBoolAlg a✝)
                                  instance instOneBool :
                                  Equations