Documentation

Mathlib.Algebra.Ring.Invertible

Theorems about invertible elements in rings #

def invertibleNeg {α : Type u} [Mul α] [One α] [HasDistribNeg α] (a : α) [Invertible a] :

-⅟a is the inverse of -a

Equations
Instances For
    @[simp]
    theorem invOf_neg {α : Type u} [Monoid α] [HasDistribNeg α] (a : α) [Invertible a] [Invertible (-a)] :
    (-a) = -a
    @[simp]
    theorem one_sub_invOf_two {α : Type u} [Ring α] [Invertible 2] :
    1 - 2 = 2
    @[simp]
    theorem pos_of_invertible_cast {α : Type u} [Semiring α] [Nontrivial α] (n : ) [Invertible n] :
    0 < n
    theorem invOf_add_invOf {α : Type u} [Semiring α] (a b : α) [Invertible a] [Invertible b] :
    a + b = a * (a + b) * b
    theorem invOf_sub_invOf {α : Type u} [Ring α] (a b : α) [Invertible a] [Invertible b] :
    a - b = a * (b - a) * b

    A version of inv_sub_inv' for invOf.

    theorem Ring.inverse_add_inverse {α : Type u} [Semiring α] {a b : α} (h : IsUnit a IsUnit b) :
    inverse a + inverse b = inverse a * (a + b) * inverse b

    A version of inv_add_inv' for Ring.inverse.

    theorem Ring.inverse_sub_inverse {α : Type u} [Ring α] {a b : α} (h : IsUnit a IsUnit b) :
    inverse a - inverse b = inverse a * (b - a) * inverse b

    A version of inv_sub_inv' for Ring.inverse.