Documentation

Mathlib.Algebra.Ring.NonZeroDivisors

Non-zero divisors in a ring #

theorem mul_cancel_right_mem_nonZeroDivisors {R : Type u_1} [Ring R] {x y r : R} (hr : r nonZeroDivisors R) :
x * r = y * r x = y
theorem mul_cancel_right_coe_nonZeroDivisors {R : Type u_1} [Ring R] {x y : R} {c : (nonZeroDivisors R)} :
x * c = y * c x = y

In a finite ring, an element is a unit iff it is a non-zero-divisor.

@[simp]
theorem mul_cancel_left_mem_nonZeroDivisors {R : Type u_1} [CommRing R] {r x y : R} (hr : r nonZeroDivisors R) :
r * x = r * y x = y
theorem mul_cancel_left_coe_nonZeroDivisors {R : Type u_1} [CommRing R] {x y : R} {c : (nonZeroDivisors R)} :
c * x = c * y x = y
theorem dvd_cancel_right_mem_nonZeroDivisors {R : Type u_1} [CommRing R] {r x y : R} (hr : r nonZeroDivisors R) :
x * r y * r x y
theorem dvd_cancel_right_coe_nonZeroDivisors {R : Type u_1} [CommRing R] {x y : R} {c : (nonZeroDivisors R)} :
x * c y * c x y
theorem dvd_cancel_left_mem_nonZeroDivisors {R : Type u_1} [CommRing R] {r x y : R} (hr : r nonZeroDivisors R) :
r * x r * y x y
theorem dvd_cancel_left_coe_nonZeroDivisors {R : Type u_1} [CommRing R] {x y : R} {c : (nonZeroDivisors R)} :
c * x c * y x y