Modifying skew monoid algebra at exactly one point #
This file contains basic results on updating/erasing an element of a skew monoid algebras using one point of the domain.
Given an element f
of a skew monoid algebra, erase a f
is an element with the same coefficients
as f
except at a
where the coefficient is 0
.
If a
is not in the support of f
then erase a f = f
.
Equations
- SkewMonoidAlgebra.erase a = { toFun := fun (f : SkewMonoidAlgebra M α) => { toFinsupp := Finsupp.erase a f.toFinsupp }, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
SkewMonoidAlgebra.erase_apply_toFinsupp
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a : α)
(f : SkewMonoidAlgebra M α)
:
@[simp]
theorem
SkewMonoidAlgebra.support_erase
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a : α)
(f : SkewMonoidAlgebra M α)
[DecidableEq α]
:
@[simp]
theorem
SkewMonoidAlgebra.coeff_erase_same
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a : α)
(f : SkewMonoidAlgebra M α)
:
@[simp]
theorem
SkewMonoidAlgebra.coeff_erase_ne
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
{a a' : α}
(f : SkewMonoidAlgebra M α)
(h : a' ≠ a)
:
@[simp]
theorem
SkewMonoidAlgebra.erase_single
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a : α)
(b : M)
:
theorem
SkewMonoidAlgebra.coeff_erase_apply
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a a' : α)
(f : SkewMonoidAlgebra M α)
[DecidableEq α]
:
theorem
SkewMonoidAlgebra.single_add_erase
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a : α)
(f : SkewMonoidAlgebra M α)
:
theorem
SkewMonoidAlgebra.induction
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
{p : SkewMonoidAlgebra M α → Prop}
(f : SkewMonoidAlgebra M α)
(h0 : p 0)
(ha : ∀ (a : α) (b : M) (f : SkewMonoidAlgebra M α), a ∉ f.support → b ≠ 0 → p f → p (single a b + f))
:
p f
def
SkewMonoidAlgebra.update
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
(b : M)
:
Replace the coefficent of an element f
of a skew monoid algebra at a given point a : α
by
a given value b : M
.
If b = 0
, this amounts to removing a
from the support of f
.
Otherwise, if a
was not in the support
of f
, it is added to it.
Instances For
@[simp]
theorem
SkewMonoidAlgebra.update_toFinsupp
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
(b : M)
:
@[simp]
theorem
SkewMonoidAlgebra.update_self
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
:
@[simp]
theorem
SkewMonoidAlgebra.zero_update
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(a : α)
(b : M)
:
theorem
SkewMonoidAlgebra.support_update
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
(b : M)
[DecidableEq α]
[DecidableEq M]
:
theorem
SkewMonoidAlgebra.coeff_update
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
(b : M)
[DecidableEq α]
:
theorem
SkewMonoidAlgebra.coeff_update_apply
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a a' : α)
(b : M)
[DecidableEq α]
:
@[simp]
theorem
SkewMonoidAlgebra.coeff_update_same
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
(b : M)
[DecidableEq α]
:
@[simp]
theorem
SkewMonoidAlgebra.coeff_update_ne
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
{a a' : α}
(b : M)
[DecidableEq α]
(h : a' ≠ a)
:
theorem
SkewMonoidAlgebra.update_eq_erase_add_single
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
(b : M)
[DecidableEq α]
:
@[simp]
theorem
SkewMonoidAlgebra.update_zero_eq_erase
{M : Type u_4}
{α : Type u_5}
[AddCommMonoid M]
(f : SkewMonoidAlgebra M α)
(a : α)
[DecidableEq α]
: