Documentation
Mathlib
.
Algebra
.
Star
.
Center
Search
return to top
source
Imports
Init
Mathlib.Algebra.Group.Center
Mathlib.Algebra.Star.Basic
Mathlib.Algebra.Star.Pointwise
Imported by
Set
.
star_mem_center
Set
.
star_centralizer
Set
.
union_star_self_comm
Set
.
star_mem_centralizer'
Set
.
star_mem_centralizer
Set.center
,
Set.centralizer
and the
star
operation
#
source
theorem
Set
.
star_mem_center
{R :
Type
u_1}
[
Mul
R
]
[
StarMul
R
]
{a :
R
}
(ha :
a
∈
center
R
)
:
star
a
∈
center
R
source
theorem
Set
.
star_centralizer
{R :
Type
u_1}
[
Mul
R
]
[
StarMul
R
]
{s :
Set
R
}
:
star
s
.centralizer
=
(
star
s
)
.centralizer
source
theorem
Set
.
union_star_self_comm
{R :
Type
u_1}
[
Mul
R
]
[
StarMul
R
]
{s :
Set
R
}
(hcomm :
∀
x
∈
s
,
∀
y
∈
s
,
y
*
x
=
x
*
y
)
(hcomm_star :
∀
x
∈
s
,
∀
y
∈
s
,
y
*
star
x
=
star
x
*
y
)
(x :
R
)
:
x
∈
s
∪
star
s
→
∀
y
∈
s
∪
star
s
,
y
*
x
=
x
*
y
source
theorem
Set
.
star_mem_centralizer'
{R :
Type
u_1}
[
Mul
R
]
[
StarMul
R
]
{a :
R
}
{s :
Set
R
}
(h :
∀
a
∈
s
,
star
a
∈
s
)
(ha :
a
∈
s
.centralizer
)
:
star
a
∈
s
.centralizer
source
theorem
Set
.
star_mem_centralizer
{R :
Type
u_1}
[
Mul
R
]
[
StarMul
R
]
{a :
R
}
{s :
Set
R
}
(ha :
a
∈
(
s
∪
star
s
)
.centralizer
)
:
star
a
∈
(
s
∪
star
s
)
.centralizer