The model category structure on Over categories #
Let C be a model category. For any S : C, we define
a model category structure on the category Over S:
a morphism X ⟶ Y in Over S is a cofibration
(resp. a fibration, a weak equivalence) if the
underlying morphism f.left : X.left ⟶ Y.left is.
(Apart from the existence of (finite) limits
from Limits.Constructions.Over.Basic, the verification
of the axioms is straightforward.)
TODO #
- Proceed to the dual construction for
Under S.
instance
HomotopicalAlgebra.instCategoryWithCofibrationsOver
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithCofibrations C]
:
Equations
- HomotopicalAlgebra.instCategoryWithCofibrationsOver S = { cofibrations := (HomotopicalAlgebra.cofibrations C).over }
theorem
HomotopicalAlgebra.cofibrations_over_def
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithCofibrations C]
:
theorem
HomotopicalAlgebra.cofibrations_over_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithCofibrations C]
{X Y : CategoryTheory.Over S}
(f : X ⟶ Y)
:
instance
HomotopicalAlgebra.instCofibrationLeftDiscretePUnitOfOver
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithCofibrations C]
{X Y : CategoryTheory.Over S}
(f : X ⟶ Y)
[Cofibration f]
:
instance
HomotopicalAlgebra.instIsStableUnderRetractsOverCofibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithCofibrations C]
[(cofibrations C).IsStableUnderRetracts]
:
instance
HomotopicalAlgebra.instCategoryWithFibrationsOver
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithFibrations C]
:
Equations
- HomotopicalAlgebra.instCategoryWithFibrationsOver S = { fibrations := (HomotopicalAlgebra.fibrations C).over }
theorem
HomotopicalAlgebra.fibrations_over_def
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithFibrations C]
:
theorem
HomotopicalAlgebra.fibrations_over_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithFibrations C]
{X Y : CategoryTheory.Over S}
(f : X ⟶ Y)
:
instance
HomotopicalAlgebra.instFibrationLeftDiscretePUnitOfOver
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithFibrations C]
{X Y : CategoryTheory.Over S}
(f : X ⟶ Y)
[Fibration f]
:
instance
HomotopicalAlgebra.instIsStableUnderRetractsOverFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithFibrations C]
[(fibrations C).IsStableUnderRetracts]
:
instance
HomotopicalAlgebra.instCategoryWithWeakEquivalencesOver
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
:
Equations
- HomotopicalAlgebra.instCategoryWithWeakEquivalencesOver S = { weakEquivalences := (HomotopicalAlgebra.weakEquivalences C).over }
theorem
HomotopicalAlgebra.weakEquivalences_over_def
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
:
theorem
HomotopicalAlgebra.weakEquivalences_over_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
{X Y : CategoryTheory.Over S}
(f : X ⟶ Y)
:
instance
HomotopicalAlgebra.instWeakEquivalenceLeftDiscretePUnitOfOver
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
{X Y : CategoryTheory.Over S}
(f : X ⟶ Y)
[WeakEquivalence f]
:
theorem
HomotopicalAlgebra.trivialCofibrations_over_eq
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
:
theorem
HomotopicalAlgebra.trivialFibrations_over_eq
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
[CategoryWithFibrations C]
:
instance
HomotopicalAlgebra.instHasFactorizationOverTrivialCofibrationsFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(trivialCofibrations C).HasFactorization (fibrations C)]
:
instance
HomotopicalAlgebra.instHasFactorizationOverCofibrationsTrivialFibrations
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[CategoryWithWeakEquivalences C]
[CategoryWithCofibrations C]
[CategoryWithFibrations C]
[(cofibrations C).HasFactorization (trivialFibrations C)]
:
instance
HomotopicalAlgebra.ModelCategory.over
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(S : C)
[ModelCategory C]
:
Equations
- One or more equations did not get rendered due to their size.