Documentation

Mathlib.AlgebraicTopology.SimplexCategory.Defs

The simplex category #

We construct a skeletal model of the simplex category, with objects and the morphisms n ⟶ m being the monotone maps from Fin (n + 1) to Fin (m + 1).

In Mathlib.AlgebraicTopology.SimplexCategory.Basic, we show that this category is equivalent to NonemptyFinLinOrd.

Remarks #

The definitions SimplexCategory and SimplexCategory.Hom are marked as irreducible.

We provide the following functions to work with these objects:

  1. SimplexCategory.mk creates an object of SimplexCategory out of a natural number. Use the notation ⦋n⦌ in the Simplicial locale.
  2. SimplexCategory.len gives the "length" of an object of SimplexCategory, as a natural.
  3. SimplexCategory.Hom.mk makes a morphism out of a monotone map between Fin's.
  4. SimplexCategory.Hom.toOrderHom gives the underlying monotone map associated to a term of SimplexCategory.Hom.
@[irreducible]

The simplex category:

  • objects are natural numbers n : ℕ
  • morphisms from n to m are monotone functions Fin (n+1) → Fin (m+1)
Equations
Instances For

    Interpret a natural number as an object of the simplex category.

    Equations
    Instances For

      the n-dimensional simplex can be denoted ⦋n⦌

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The length of an object of SimplexCategory.

        Equations
        Instances For
          theorem SimplexCategory.ext (a b : SimplexCategory) :
          a.len = b.lena = b
          @[simp]
          theorem SimplexCategory.len_mk (n : ) :
          (mk n).len = n
          def SimplexCategory.rec {F : SimplexCategorySort u_1} (h : (n : ) → F (mk n)) (X : SimplexCategory) :
          F X

          A recursor for SimplexCategory. Use it as induction Δ using SimplexCategory.rec.

          Equations
          Instances For
            @[irreducible]

            Morphisms in the SimplexCategory.

            Equations
            Instances For
              def SimplexCategory.Hom.mk {a b : SimplexCategory} (f : Fin (a.len + 1) →o Fin (b.len + 1)) :
              a.Hom b

              Make a morphism in SimplexCategory from a monotone map of Fin's.

              Equations
              Instances For
                def SimplexCategory.Hom.toOrderHom {a b : SimplexCategory} (f : a.Hom b) :
                Fin (a.len + 1) →o Fin (b.len + 1)

                Recover the monotone map from a morphism in the simplex category.

                Equations
                Instances For
                  theorem SimplexCategory.Hom.ext' {a b : SimplexCategory} (f g : a.Hom b) :
                  f.toOrderHom = g.toOrderHomf = g
                  @[simp]
                  theorem SimplexCategory.Hom.mk_toOrderHom_apply {a b : SimplexCategory} (f : Fin (a.len + 1) →o Fin (b.len + 1)) (i : Fin (a.len + 1)) :
                  (mk f).toOrderHom i = f i
                  def SimplexCategory.Hom.comp {a b c : SimplexCategory} (f : b.Hom c) (g : a.Hom b) :
                  a.Hom c

                  Composition of morphisms of SimplexCategory.

                  Equations
                  Instances For
                    theorem SimplexCategory.Hom.ext {a b : SimplexCategory} (f g : a b) :
                    toOrderHom f = toOrderHom gf = g

                    The truncated simplex category.

                    Equations
                    Instances For

                      The fully faithful inclusion of the truncated simplex category into the usual simplex category.

                      Equations
                      Instances For
                        theorem SimplexCategory.Truncated.Hom.ext {n : } {a b : Truncated n} (f g : a b) :