Box-additive functions defined by measures #
In this file we prove a few simple facts about rectangular boxes, partitions, and measures:
- given a box
I : Box ι
, its coercion toSet (ι → ℝ)
andI.Icc
are measurable sets; - if
μ
is a locally finite measure, then(I : Set (ι → ℝ))
andI.Icc
have finite measure; - if
μ
is a locally finite measure, thenfun J ↦ (μ J).toReal
is a box additive function.
For the last statement, we both prove it as a proposition and define a bundled
BoxIntegral.BoxAdditiveMap
function.
Tags #
rectangular box, measure
theorem
BoxIntegral.Box.measure_Icc_lt_top
{ι : Type u_1}
(I : Box ι)
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
theorem
BoxIntegral.Box.measure_coe_lt_top
{ι : Type u_1}
(I : Box ι)
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
theorem
BoxIntegral.Box.measurableSet_Icc
{ι : Type u_1}
(I : Box ι)
[Countable ι]
:
MeasurableSet (Box.Icc I)
theorem
BoxIntegral.Box.measurableSet_Ioo
{ι : Type u_1}
(I : Box ι)
[Countable ι]
:
MeasurableSet (Box.Ioo I)
theorem
BoxIntegral.Box.coe_ae_eq_Icc
{ι : Type u_1}
(I : Box ι)
[Fintype ι]
:
↑I =ᵐ[MeasureTheory.volume] Box.Icc I
theorem
BoxIntegral.Box.Ioo_ae_eq_Icc
{ι : Type u_1}
(I : Box ι)
[Fintype ι]
:
Box.Ioo I =ᵐ[MeasureTheory.volume] Box.Icc I
theorem
BoxIntegral.Prepartition.measure_iUnion_toReal
{ι : Type u_1}
[Finite ι]
{I : Box ι}
(π : Prepartition I)
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
(μ π.iUnion).toReal = ∑ J ∈ π.boxes, (μ ↑J).toReal
def
MeasureTheory.Measure.toBoxAdditive
{ι : Type u_1}
[Finite ι]
(μ : Measure (ι → ℝ))
[IsLocallyFiniteMeasure μ]
:
If μ
is a locally finite measure on ℝⁿ
, then fun J ↦ (μ J).toReal
is a box-additive
function.
Equations
- μ.toBoxAdditive = { toFun := fun (J : BoxIntegral.Box ι) => (μ ↑J).toReal, sum_partition_boxes' := ⋯ }
Instances For
@[simp]
theorem
MeasureTheory.Measure.toBoxAdditive_apply
{ι : Type u_1}
[Finite ι]
(μ : Measure (ι → ℝ))
[IsLocallyFiniteMeasure μ]
(J : BoxIntegral.Box ι)
:
μ.toBoxAdditive J = (μ ↑J).toReal
theorem
BoxIntegral.Box.volume_apply
{ι : Type u_1}
[Fintype ι]
(I : Box ι)
:
MeasureTheory.volume.toBoxAdditive I = ∏ i : ι, (I.upper i - I.lower i)
def
BoxIntegral.BoxAdditiveMap.volume
{ι : Type u_1}
[Fintype ι]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
:
BoxAdditiveMap ι (E →L[ℝ] E) ⊤
Box-additive map sending each box I
to the continuous linear endomorphism
x ↦ (volume I).toReal • x
.
Equations
- BoxIntegral.BoxAdditiveMap.volume = MeasureTheory.volume.toBoxAdditive.toSMul
Instances For
theorem
BoxIntegral.BoxAdditiveMap.volume_apply
{ι : Type u_1}
[Fintype ι]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(I : Box ι)
(x : E)
: