Projections in C⋆-algebras #
To show that an element is a star projection in a non-unital C⋆-algebra, it is enough to show that it is idempotent and normal, because self-adjointedness and normality are equivalent for idempotent elements in non-unital C⋆-algebras.
theorem
IsIdempotentElem.isSelfAdjoint_iff_isStarNormal
{A : Type u_1}
[TopologicalSpace A]
[NonUnitalRing A]
[StarRing A]
[Module ℂ A]
[IsScalarTower ℂ A A]
[SMulCommClass ℂ A A]
[NonUnitalContinuousFunctionalCalculus ℂ A IsStarNormal]
{p : A}
(hp : IsIdempotentElem p)
:
An idempotent element in a non-unital C⋆-algebra is self-adjoint iff it is normal.
theorem
isStarProjection_iff_isIdempotentElem_and_isStarNormal
{A : Type u_1}
[TopologicalSpace A]
[NonUnitalRing A]
[StarRing A]
[Module ℂ A]
[IsScalarTower ℂ A A]
[SMulCommClass ℂ A A]
[NonUnitalContinuousFunctionalCalculus ℂ A IsStarNormal]
{p : A}
:
An element in a non-unital C⋆-algebra is a star projection if and only if it is idempotent and normal.