Documentation

Mathlib.Analysis.Calculus.AddTorsor.AffineMap

Smooth affine maps #

This file contains results about smoothness of affine maps.

Main definitions: #

theorem ContinuousAffineMap.contDiff {𝕜 : Type u_1} {V : Type u_2} {W : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup V] [NormedSpace 𝕜 V] [NormedAddCommGroup W] [NormedSpace 𝕜 W] {n : WithTop ℕ∞} (f : V →ᴬ[𝕜] W) :
ContDiff 𝕜 n f

A continuous affine map between normed vector spaces is smooth.

theorem ContinuousAffineMap.differentiable {𝕜 : Type u_1} {V : Type u_2} {W : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup V] [NormedSpace 𝕜 V] [NormedAddCommGroup W] [NormedSpace 𝕜 W] (f : V →ᴬ[𝕜] W) :
Differentiable 𝕜 f
theorem ContinuousAffineMap.differentiableAt {𝕜 : Type u_1} {V : Type u_2} {W : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup V] [NormedSpace 𝕜 V] [NormedAddCommGroup W] [NormedSpace 𝕜 W] (f : V →ᴬ[𝕜] W) {x : V} :
DifferentiableAt 𝕜 (⇑f) x
theorem ContinuousAffineMap.differentiableOn {𝕜 : Type u_1} {V : Type u_2} {W : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup V] [NormedSpace 𝕜 V] [NormedAddCommGroup W] [NormedSpace 𝕜 W] (f : V →ᴬ[𝕜] W) {s : Set V} :
DifferentiableOn 𝕜 (⇑f) s
theorem ContinuousAffineMap.differentiableWithinAt {𝕜 : Type u_1} {V : Type u_2} {W : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup V] [NormedSpace 𝕜 V] [NormedAddCommGroup W] [NormedSpace 𝕜 W] (f : V →ᴬ[𝕜] W) {s : Set V} {x : V} :
DifferentiableWithinAt 𝕜 (⇑f) s x
@[simp]
theorem ContinuousAffineMap.fderiv {𝕜 : Type u_1} {V : Type u_2} {W : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup V] [NormedSpace 𝕜 V] [NormedAddCommGroup W] [NormedSpace 𝕜 W] (f : V →ᴬ[𝕜] W) {x : V} :
_root_.fderiv 𝕜 (⇑f) x = f.contLinear