Smooth affine maps #
This file contains results about smoothness of affine maps.
Main definitions: #
ContinuousAffineMap.contDiff
: a continuous affine map is smooth
theorem
ContinuousAffineMap.contDiff
{𝕜 : Type u_1}
{V : Type u_2}
{W : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup V]
[NormedSpace 𝕜 V]
[NormedAddCommGroup W]
[NormedSpace 𝕜 W]
{n : WithTop ℕ∞}
(f : V →ᴬ[𝕜] W)
:
ContDiff 𝕜 n ⇑f
A continuous affine map between normed vector spaces is smooth.
theorem
ContinuousAffineMap.differentiable
{𝕜 : Type u_1}
{V : Type u_2}
{W : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup V]
[NormedSpace 𝕜 V]
[NormedAddCommGroup W]
[NormedSpace 𝕜 W]
(f : V →ᴬ[𝕜] W)
:
Differentiable 𝕜 ⇑f
theorem
ContinuousAffineMap.differentiableAt
{𝕜 : Type u_1}
{V : Type u_2}
{W : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup V]
[NormedSpace 𝕜 V]
[NormedAddCommGroup W]
[NormedSpace 𝕜 W]
(f : V →ᴬ[𝕜] W)
{x : V}
:
DifferentiableAt 𝕜 (⇑f) x
theorem
ContinuousAffineMap.differentiableOn
{𝕜 : Type u_1}
{V : Type u_2}
{W : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup V]
[NormedSpace 𝕜 V]
[NormedAddCommGroup W]
[NormedSpace 𝕜 W]
(f : V →ᴬ[𝕜] W)
{s : Set V}
:
DifferentiableOn 𝕜 (⇑f) s
theorem
ContinuousAffineMap.differentiableWithinAt
{𝕜 : Type u_1}
{V : Type u_2}
{W : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup V]
[NormedSpace 𝕜 V]
[NormedAddCommGroup W]
[NormedSpace 𝕜 W]
(f : V →ᴬ[𝕜] W)
{s : Set V}
{x : V}
:
DifferentiableWithinAt 𝕜 (⇑f) s x
@[simp]
theorem
ContinuousAffineMap.fderiv
{𝕜 : Type u_1}
{V : Type u_2}
{W : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup V]
[NormedSpace 𝕜 V]
[NormedAddCommGroup W]
[NormedSpace 𝕜 W]
(f : V →ᴬ[𝕜] W)
{x : V}
: