Documentation

Mathlib.Analysis.Calculus.BumpFunction.Normed

Normed bump function #

In this file we define ContDiffBump.normed f μ to be the bump function f normalized so that ∫ x, f.normed μ x ∂μ = 1 and prove some properties of this function.

A bump function normed so that ∫ x, f.normed μ x ∂μ = 1.

Equations
Instances For
    theorem ContDiffBump.normed_def {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [HasContDiffBump E] [MeasurableSpace E] {c : E} (f : ContDiffBump c) {μ : MeasureTheory.Measure E} (x : E) :
    f.normed μ x = f x / (x : E), f x μ
    theorem ContDiffBump.normed_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [HasContDiffBump E] [MeasurableSpace E] {c : E} (f : ContDiffBump c) {μ : MeasureTheory.Measure E} (x : E) :
    f.normed μ (c - x) = f.normed μ (c + x)
    theorem ContDiffBump.tendsto_support_normed_smallSets {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [HasContDiffBump E] [MeasurableSpace E] {c : E} {μ : MeasureTheory.Measure E} [BorelSpace E] [FiniteDimensional E] [MeasureTheory.IsLocallyFiniteMeasure μ] [μ.IsOpenPosMeasure] {ι : Type u_2} {φ : ιContDiffBump c} {l : Filter ι} (hφ : Filter.Tendsto (fun (i : ι) => (φ i).rOut) l (nhds 0)) :
    Filter.Tendsto (fun (i : ι) => Function.support fun (x : E) => (φ i).normed μ x) l (nhds c).smallSets