Documentation

Mathlib.Analysis.Calculus.ContDiff.CPolynomial

Higher smoothness of continuously polynomial functions #

We prove that continuously polynomial functions are C^∞. In particular, this is the case of continuous multilinear maps.

theorem CPolynomialOn.contDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {s : Set E} (h : CPolynomialOn 𝕜 f s) {n : WithTop ℕ∞} :
ContDiffOn 𝕜 n f s

A polynomial function is infinitely differentiable.

theorem CPolynomialAt.contDiffAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {x : E} (h : CPolynomialAt 𝕜 f x) {n : WithTop ℕ∞} :
ContDiffAt 𝕜 n f x
theorem ContinuousMultilinearMap.contDiffAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_2} {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 E F) {n : WithTop ℕ∞} {x : (i : ι) → E i} :
ContDiffAt 𝕜 n (⇑f) x
theorem ContinuousMultilinearMap.contDiff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {ι : Type u_2} {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (f : ContinuousMultilinearMap 𝕜 E F) {n : WithTop ℕ∞} :
ContDiff 𝕜 n f