Documentation

Mathlib.Analysis.Calculus.ContDiff.WithLp

Derivatives on WithLp #

theorem contDiffWithinAt_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {n : WithTop ℕ∞} {f : HPiLp p E} {t : Set H} {y : H} :
ContDiffWithinAt 𝕜 n f t y ∀ (i : ι), ContDiffWithinAt 𝕜 n (fun (x : H) => f x i) t y
theorem contDiffAt_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {n : WithTop ℕ∞} {f : HPiLp p E} {y : H} :
ContDiffAt 𝕜 n f y ∀ (i : ι), ContDiffAt 𝕜 n (fun (x : H) => f x i) y
theorem contDiffOn_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {n : WithTop ℕ∞} {f : HPiLp p E} {t : Set H} :
ContDiffOn 𝕜 n f t ∀ (i : ι), ContDiffOn 𝕜 n (fun (x : H) => f x i) t
theorem contDiff_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {n : WithTop ℕ∞} {f : HPiLp p E} :
ContDiff 𝕜 n f ∀ (i : ι), ContDiff 𝕜 n fun (x : H) => f x i