Slope of a differentiable function #
Given a function f : ๐ โ E
from a nontrivially normed field to a normed space over this field,
dslope f a b
is defined as slope f a b = (b - a)โปยน โข (f b - f a)
for a โ b
and as deriv f a
for a = b
.
In this file we define dslope
and prove some basic lemmas about its continuity and
differentiability.
noncomputable def
dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โ E)
(a : ๐)
:
๐ โ E
dslope f a b
is defined as slope f a b = (b - a)โปยน โข (f b - f a)
for a โ b
and
deriv f a
for a = b
.
Equations
- dslope f a = Function.update (slope f a) a (deriv f a)
Instances For
@[simp]
theorem
dslope_same
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โ E)
(a : ๐)
:
theorem
dslope_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a b : ๐}
(f : ๐ โ E)
(h : b โ a)
:
theorem
ContinuousLinearMap.dslope_comp
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(g : ๐ โ E)
(a b : ๐)
(H : a = b โ DifferentiableAt ๐ g a)
:
theorem
eqOn_dslope_slope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โ E)
(a : ๐)
:
theorem
dslope_eventuallyEq_slope_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a b : ๐}
(f : ๐ โ E)
(h : b โ a)
:
theorem
dslope_eventuallyEq_slope_punctured_nhds
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a : ๐}
(f : ๐ โ E)
:
@[simp]
theorem
sub_smul_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โ E)
(a b : ๐)
:
theorem
dslope_sub_smul_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{a b : ๐}
(f : ๐ โ E)
(h : b โ a)
:
theorem
eqOn_dslope_sub_smul
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(f : ๐ โ E)
(a : ๐)
:
theorem
dslope_sub_smul
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[DecidableEq ๐]
(f : ๐ โ E)
(a : ๐)
:
@[simp]
theorem
continuousAt_dslope_same
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a : ๐}
:
ContinuousAt (dslope f a) a โ DifferentiableAt ๐ f a
theorem
ContinuousWithinAt.of_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
{s : Set ๐}
(h : ContinuousWithinAt (dslope f a) s b)
:
ContinuousWithinAt f s b
theorem
ContinuousAt.of_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
(h : ContinuousAt (dslope f a) b)
:
ContinuousAt f b
theorem
ContinuousOn.of_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a : ๐}
{s : Set ๐}
(h : ContinuousOn (dslope f a) s)
:
ContinuousOn f s
theorem
continuousWithinAt_dslope_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
{s : Set ๐}
(h : b โ a)
:
ContinuousWithinAt (dslope f a) s b โ ContinuousWithinAt f s b
theorem
continuousAt_dslope_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
(h : b โ a)
:
ContinuousAt (dslope f a) b โ ContinuousAt f b
theorem
continuousOn_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a : ๐}
{s : Set ๐}
(h : s โ nhds a)
:
ContinuousOn (dslope f a) s โ ContinuousOn f s โง DifferentiableAt ๐ f a
theorem
DifferentiableWithinAt.of_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
{s : Set ๐}
(h : DifferentiableWithinAt ๐ (dslope f a) s b)
:
DifferentiableWithinAt ๐ f s b
theorem
DifferentiableAt.of_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
(h : DifferentiableAt ๐ (dslope f a) b)
:
DifferentiableAt ๐ f b
theorem
DifferentiableOn.of_dslope
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a : ๐}
{s : Set ๐}
(h : DifferentiableOn ๐ (dslope f a) s)
:
DifferentiableOn ๐ f s
theorem
differentiableWithinAt_dslope_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
{s : Set ๐}
(h : b โ a)
:
DifferentiableWithinAt ๐ (dslope f a) s b โ DifferentiableWithinAt ๐ f s b
theorem
differentiableOn_dslope_of_nmem
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a : ๐}
{s : Set ๐}
(h : a โ s)
:
DifferentiableOn ๐ (dslope f a) s โ DifferentiableOn ๐ f s
theorem
differentiableAt_dslope_of_ne
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{f : ๐ โ E}
{a b : ๐}
(h : b โ a)
:
DifferentiableAt ๐ (dslope f a) b โ DifferentiableAt ๐ f b