Derivative of the absolute value #
This file compiles basic derivability properties of the absolute value, and is largely inspired
from Mathlib.Analysis.InnerProductSpace.Calculus
, which is the analogous file for norms derived
from an inner product space.
Tags #
absolute value, derivative
theorem
ContDiffAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ∞}
{f : E → ℝ}
{x : E}
(hf : ContDiffAt ℝ (↑n) f x)
(h₀ : f x ≠ 0)
:
ContDiffAt ℝ (↑n) (fun (x : E) => |f x|) x
theorem
contDiffWithinAt_abs
{n : ℕ∞}
{x : ℝ}
(hx : x ≠ 0)
(s : Set ℝ)
:
ContDiffWithinAt ℝ (↑n) (fun (x : ℝ) => |x|) s x
theorem
ContDiffWithinAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ∞}
{f : E → ℝ}
{s : Set E}
{x : E}
(hf : ContDiffWithinAt ℝ (↑n) f s x)
(h₀ : f x ≠ 0)
:
ContDiffWithinAt ℝ (↑n) (fun (y : E) => |f y|) s x
theorem
contDiffOn_abs
{n : ℕ∞}
{s : Set ℝ}
(hs : ∀ x ∈ s, x ≠ 0)
:
ContDiffOn ℝ (↑n) (fun (x : ℝ) => |x|) s
theorem
ContDiffOn.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ∞}
{f : E → ℝ}
{s : Set E}
(hf : ContDiffOn ℝ (↑n) f s)
(h₀ : ∀ x ∈ s, f x ≠ 0)
:
ContDiffOn ℝ (↑n) (fun (y : E) => |f y|) s
theorem
ContDiff.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ∞}
{f : E → ℝ}
(hf : ContDiff ℝ (↑n) f)
(h₀ : ∀ (x : E), f x ≠ 0)
:
theorem
hasStrictDerivAt_abs
{x : ℝ}
(hx : x ≠ 0)
:
HasStrictDerivAt (fun (x : ℝ) => |x|) (↑(SignType.sign x)) x
theorem
HasStrictFDerivAt.abs_of_neg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(h₀ : f x < 0)
:
HasStrictFDerivAt (fun (x : E) => |f x|) (-f') x
theorem
HasFDerivAt.abs_of_neg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{x : E}
(hf : HasFDerivAt f f' x)
(h₀ : f x < 0)
:
HasFDerivAt (fun (x : E) => |f x|) (-f') x
theorem
HasStrictFDerivAt.abs_of_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(h₀ : 0 < f x)
:
HasStrictFDerivAt (fun (x : E) => |f x|) f' x
theorem
HasFDerivAt.abs_of_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{x : E}
(hf : HasFDerivAt f f' x)
(h₀ : 0 < f x)
:
HasFDerivAt (fun (x : E) => |f x|) f' x
theorem
HasStrictFDerivAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(h₀ : f x ≠ 0)
:
HasStrictFDerivAt (fun (x : E) => |f x|) (↑(SignType.sign (f x)) • f') x
theorem
HasFDerivAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{x : E}
(hf : HasFDerivAt f f' x)
(h₀ : f x ≠ 0)
:
HasFDerivAt (fun (x : E) => |f x|) (↑(SignType.sign (f x)) • f') x
theorem
hasDerivWithinAt_abs_neg
(s : Set ℝ)
{x : ℝ}
(hx : x < 0)
:
HasDerivWithinAt (fun (x : ℝ) => |x|) (-1) s x
theorem
hasDerivWithinAt_abs_pos
(s : Set ℝ)
{x : ℝ}
(hx : 0 < x)
:
HasDerivWithinAt (fun (x : ℝ) => |x|) 1 s x
theorem
hasDerivWithinAt_abs
(s : Set ℝ)
{x : ℝ}
(hx : x ≠ 0)
:
HasDerivWithinAt (fun (x : ℝ) => |x|) (↑(SignType.sign x)) s x
theorem
HasFDerivWithinAt.abs_of_neg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{s : Set E}
{x : E}
(hf : HasFDerivWithinAt f f' s x)
(h₀ : f x < 0)
:
HasFDerivWithinAt (fun (x : E) => |f x|) (-f') s x
theorem
HasFDerivWithinAt.abs_of_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{s : Set E}
{x : E}
(hf : HasFDerivWithinAt f f' s x)
(h₀ : 0 < f x)
:
HasFDerivWithinAt (fun (x : E) => |f x|) f' s x
theorem
HasFDerivWithinAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{f' : E →L[ℝ] ℝ}
{s : Set E}
{x : E}
(hf : HasFDerivWithinAt f f' s x)
(h₀ : f x ≠ 0)
:
HasFDerivWithinAt (fun (x : E) => |f x|) (↑(SignType.sign (f x)) • f') s x
theorem
DifferentiableAt.abs_of_neg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(h₀ : f x < 0)
:
DifferentiableAt ℝ (fun (x : E) => |f x|) x
theorem
DifferentiableAt.abs_of_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(h₀ : 0 < f x)
:
DifferentiableAt ℝ (fun (x : E) => |f x|) x
theorem
DifferentiableAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(h₀ : f x ≠ 0)
:
DifferentiableAt ℝ (fun (x : E) => |f x|) x
theorem
differentiableWithinAt_abs_neg
(s : Set ℝ)
{x : ℝ}
(hx : x < 0)
:
DifferentiableWithinAt ℝ (fun (x : ℝ) => |x|) s x
theorem
differentiableWithinAt_abs_pos
(s : Set ℝ)
{x : ℝ}
(hx : 0 < x)
:
DifferentiableWithinAt ℝ (fun (x : ℝ) => |x|) s x
theorem
differentiableWithinAt_abs
(s : Set ℝ)
{x : ℝ}
(hx : x ≠ 0)
:
DifferentiableWithinAt ℝ (fun (x : ℝ) => |x|) s x
theorem
DifferentiableWithinAt.abs_of_neg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
{x : E}
(hf : DifferentiableWithinAt ℝ f s x)
(h₀ : f x < 0)
:
DifferentiableWithinAt ℝ (fun (x : E) => |f x|) s x
theorem
DifferentiableWithinAt.abs_of_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
{x : E}
(hf : DifferentiableWithinAt ℝ f s x)
(h₀ : 0 < f x)
:
DifferentiableWithinAt ℝ (fun (x : E) => |f x|) s x
theorem
DifferentiableWithinAt.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
{x : E}
(hf : DifferentiableWithinAt ℝ f s x)
(h₀ : f x ≠ 0)
:
DifferentiableWithinAt ℝ (fun (x : E) => |f x|) s x
theorem
differentiableOn_abs
{s : Set ℝ}
(hs : ∀ x ∈ s, x ≠ 0)
:
DifferentiableOn ℝ (fun (x : ℝ) => |x|) s
theorem
DifferentiableOn.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
(hf : DifferentiableOn ℝ f s)
(h₀ : ∀ x ∈ s, f x ≠ 0)
:
DifferentiableOn ℝ (fun (x : E) => |f x|) s
theorem
Differentiable.abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
(hf : Differentiable ℝ f)
(h₀ : ∀ (x : E), f x ≠ 0)
:
Differentiable ℝ fun (x : E) => |f x|