Documentation

Mathlib.Analysis.Calculus.FDeriv.Affine

The derivative of continuous affine maps #

For detailed documentation of the FrΓ©chet derivative, see the module docstring of Mathlib/Analysis/Calculus/FDeriv/Basic.lean.

This file contains the usual formulas (and existence assertions) for the derivative of continuous affine maps.

Continuous affine maps #

theorem ContinuousAffineMap.hasStrictFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} :
theorem ContinuousAffineMap.hasFDerivAtFilter {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} {L : Filter E} :
theorem ContinuousAffineMap.hasFDerivWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} {s : Set E} :
theorem ContinuousAffineMap.hasFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} :
HasFDerivAt (⇑f) f.contLinear x
@[simp]
theorem ContinuousAffineMap.differentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} :
DifferentiableAt π•œ (⇑f) x
theorem ContinuousAffineMap.differentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} {s : Set E} :
DifferentiableWithinAt π•œ (⇑f) s x
@[simp]
theorem ContinuousAffineMap.fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} :
fderiv π•œ (⇑f) x = f.contLinear
theorem ContinuousAffineMap.fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {x : E} {s : Set E} (hxs : UniqueDiffWithinAt π•œ s x) :
fderivWithin π•œ (⇑f) s x = f.contLinear
@[simp]
theorem ContinuousAffineMap.differentiable {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) :
Differentiable π•œ ⇑f
theorem ContinuousAffineMap.differentiableOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] (f : E →ᴬ[π•œ] F) {s : Set E} :
DifferentiableOn π•œ (⇑f) s