The derivative of continuous affine maps #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Mathlib/Analysis/Calculus/FDeriv/Basic.lean.
This file contains the usual formulas (and existence assertions) for the derivative of continuous affine maps.
Continuous affine maps #
theorem
ContinuousAffineMap.hasStrictFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
:
HasStrictFDerivAt (βf) f.contLinear x
theorem
ContinuousAffineMap.hasFDerivAtFilter
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
{L : Filter E}
:
HasFDerivAtFilter (βf) f.contLinear x L
theorem
ContinuousAffineMap.hasFDerivWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
{s : Set E}
:
HasFDerivWithinAt (βf) f.contLinear s x
theorem
ContinuousAffineMap.hasFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
:
HasFDerivAt (βf) f.contLinear x
@[simp]
theorem
ContinuousAffineMap.differentiableAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
:
DifferentiableAt π (βf) x
theorem
ContinuousAffineMap.differentiableWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
{s : Set E}
:
DifferentiableWithinAt π (βf) s x
@[simp]
theorem
ContinuousAffineMap.fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
:
theorem
ContinuousAffineMap.fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
:
@[simp]
theorem
ContinuousAffineMap.differentiable
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
:
Differentiable π βf
theorem
ContinuousAffineMap.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βᴬ[π] F)
{s : Set E}
:
DifferentiableOn π (βf) s