Documentation

Mathlib.Analysis.Calculus.FDeriv.Congr

The FrΓ©chet derivative: congruence properties #

Lemmas about congruence properties of the Frechet derivative under change of function, set, etc.

Tags #

derivative, differentiable, FrΓ©chet, calculus

congr properties of the derivative #

theorem hasFDerivWithinAt_congr_set' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s t : Set E} (y : E) (h : s =αΆ [nhdsWithin x {y}ᢜ] t) :
theorem hasFDerivWithinAt_congr_set {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s t : Set E} (h : s =αΆ [nhds x] t) :
theorem differentiableWithinAt_congr_set' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E} (y : E) (h : s =αΆ [nhdsWithin x {y}ᢜ] t) :
theorem differentiableWithinAt_congr_set {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E} (h : s =αΆ [nhds x] t) :
theorem fderivWithin_congr_set' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E} (y : E) (h : s =αΆ [nhdsWithin x {y}ᢜ] t) :
fderivWithin π•œ f s x = fderivWithin π•œ f t x
theorem fderivWithin_congr_set {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E} (h : s =αΆ [nhds x] t) :
fderivWithin π•œ f s x = fderivWithin π•œ f t x
theorem fderivWithin_eventually_congr_set' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E} (y : E) (h : s =αΆ [nhdsWithin x {y}ᢜ] t) :
fderivWithin π•œ f s =αΆ [nhds x] fderivWithin π•œ f t
theorem fderivWithin_eventually_congr_set {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s t : Set E} (h : s =αΆ [nhds x] t) :
fderivWithin π•œ f s =αΆ [nhds x] fderivWithin π•œ f t
theorem Filter.EventuallyEq.hasStrictFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {fβ‚€' f₁' : E β†’L[π•œ] F} {x : E} (h : fβ‚€ =αΆ [nhds x] f₁) (h' : βˆ€ (y : E), fβ‚€' y = f₁' y) :
HasStrictFDerivAt fβ‚€ fβ‚€' x ↔ HasStrictFDerivAt f₁ f₁' x
theorem HasStrictFDerivAt.congr_fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' g' : E β†’L[π•œ] F} {x : E} (h : HasStrictFDerivAt f f' x) (h' : f' = g') :
theorem HasFDerivAt.congr_fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' g' : E β†’L[π•œ] F} {x : E} (h : HasFDerivAt f f' x) (h' : f' = g') :
theorem HasFDerivWithinAt.congr_fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {f' g' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (h' : f' = g') :
theorem HasStrictFDerivAt.congr_of_eventuallyEq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} (h : HasStrictFDerivAt f f' x) (h₁ : f =αΆ [nhds x] f₁) :
HasStrictFDerivAt f₁ f' x
theorem Filter.EventuallyEq.hasFDerivAtFilter_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {fβ‚€' f₁' : E β†’L[π•œ] F} {x : E} {L : Filter E} (hβ‚€ : fβ‚€ =αΆ [L] f₁) (hx : fβ‚€ x = f₁ x) (h₁ : βˆ€ (x : E), fβ‚€' x = f₁' x) :
HasFDerivAtFilter fβ‚€ fβ‚€' x L ↔ HasFDerivAtFilter f₁ f₁' x L
theorem HasFDerivAtFilter.congr_of_eventuallyEq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {L : Filter E} (h : HasFDerivAtFilter f f' x L) (hL : f₁ =αΆ [L] f) (hx : f₁ x = f x) :
HasFDerivAtFilter f₁ f' x L
theorem Filter.EventuallyEq.hasFDerivAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} (h : fβ‚€ =αΆ [nhds x] f₁) :
HasFDerivAt fβ‚€ f' x ↔ HasFDerivAt f₁ f' x
theorem Filter.EventuallyEq.differentiableAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {x : E} (h : fβ‚€ =αΆ [nhds x] f₁) :
DifferentiableAt π•œ fβ‚€ x ↔ DifferentiableAt π•œ f₁ x
theorem Filter.EventuallyEq.hasFDerivWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : fβ‚€ =αΆ [nhdsWithin x s] f₁) (hx : fβ‚€ x = f₁ x) :
HasFDerivWithinAt fβ‚€ f' s x ↔ HasFDerivWithinAt f₁ f' s x
theorem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : fβ‚€ =αΆ [nhdsWithin x s] f₁) (hx : x ∈ s) :
HasFDerivWithinAt fβ‚€ f' s x ↔ HasFDerivWithinAt f₁ f' s x
theorem Filter.EventuallyEq.differentiableWithinAt_iff {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {x : E} {s : Set E} (h : fβ‚€ =αΆ [nhdsWithin x s] f₁) (hx : fβ‚€ x = f₁ x) :
DifferentiableWithinAt π•œ fβ‚€ s x ↔ DifferentiableWithinAt π•œ f₁ s x
theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {fβ‚€ f₁ : E β†’ F} {x : E} {s : Set E} (h : fβ‚€ =αΆ [nhdsWithin x s] f₁) (hx : x ∈ s) :
DifferentiableWithinAt π•œ fβ‚€ s x ↔ DifferentiableWithinAt π•œ f₁ s x
theorem HasFDerivWithinAt.congr_mono {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s t : Set E} (h : HasFDerivWithinAt f f' s x) (ht : Set.EqOn f₁ f t) (hx : f₁ x = f x) (h₁ : t βŠ† s) :
HasFDerivWithinAt f₁ f' t x
theorem HasFDerivWithinAt.congr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (hs : Set.EqOn f₁ f s) (hx : f₁ x = f x) :
HasFDerivWithinAt f₁ f' s x
theorem HasFDerivWithinAt.congr' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (hs : Set.EqOn f₁ f s) (hx : x ∈ s) :
HasFDerivWithinAt f₁ f' s x
theorem HasFDerivWithinAt.congr_of_eventuallyEq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (h₁ : f₁ =αΆ [nhdsWithin x s] f) (hx : f₁ x = f x) :
HasFDerivWithinAt f₁ f' s x
theorem HasFDerivAt.congr_of_eventuallyEq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {f' : E β†’L[π•œ] F} {x : E} (h : HasFDerivAt f f' x) (h₁ : f₁ =αΆ [nhds x] f) :
HasFDerivAt f₁ f' x
theorem DifferentiableWithinAt.congr_mono {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s t : Set E} (h : DifferentiableWithinAt π•œ f s x) (ht : Set.EqOn f₁ f t) (hx : f₁ x = f x) (h₁ : t βŠ† s) :
DifferentiableWithinAt π•œ f₁ t x
theorem DifferentiableWithinAt.congr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (h : DifferentiableWithinAt π•œ f s x) (ht : βˆ€ x ∈ s, f₁ x = f x) (hx : f₁ x = f x) :
DifferentiableWithinAt π•œ f₁ s x
theorem DifferentiableWithinAt.congr_of_eventuallyEq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (h : DifferentiableWithinAt π•œ f s x) (h₁ : f₁ =αΆ [nhdsWithin x s] f) (hx : f₁ x = f x) :
DifferentiableWithinAt π•œ f₁ s x
theorem DifferentiableWithinAt.congr_of_eventuallyEq_of_mem {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (h : DifferentiableWithinAt π•œ f s x) (h₁ : f₁ =αΆ [nhdsWithin x s] f) (hx : x ∈ s) :
DifferentiableWithinAt π•œ f₁ s x
theorem DifferentiableWithinAt.congr_of_eventuallyEq_insert {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (h : DifferentiableWithinAt π•œ f s x) (h₁ : f₁ =αΆ [nhdsWithin x (insert x s)] f) :
DifferentiableWithinAt π•œ f₁ s x
theorem DifferentiableOn.congr_mono {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {s t : Set E} (h : DifferentiableOn π•œ f s) (h' : βˆ€ x ∈ t, f₁ x = f x) (h₁ : t βŠ† s) :
DifferentiableOn π•œ f₁ t
theorem DifferentiableOn.congr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {s : Set E} (h : DifferentiableOn π•œ f s) (h' : βˆ€ x ∈ s, f₁ x = f x) :
DifferentiableOn π•œ f₁ s
theorem differentiableOn_congr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {s : Set E} (h' : βˆ€ x ∈ s, f₁ x = f x) :
DifferentiableOn π•œ f₁ s ↔ DifferentiableOn π•œ f s
theorem DifferentiableAt.congr_of_eventuallyEq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} (h : DifferentiableAt π•œ f x) (hL : f₁ =αΆ [nhds x] f) :
DifferentiableAt π•œ f₁ x
theorem DifferentiableWithinAt.fderivWithin_congr_mono {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s t : Set E} (h : DifferentiableWithinAt π•œ f s x) (hs : Set.EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt π•œ t x) (h₁ : t βŠ† s) :
fderivWithin π•œ f₁ t x = fderivWithin π•œ f s x
theorem Filter.EventuallyEq.fderivWithin_eq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (hs : f₁ =αΆ [nhdsWithin x s] f) (hx : f₁ x = f x) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x
theorem Filter.EventuallyEq.fderivWithin_eq_of_mem {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (hs : f₁ =αΆ [nhdsWithin x s] f) (hx : x ∈ s) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x
theorem Filter.EventuallyEq.fderivWithin_eq_of_insert {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (hs : f₁ =αΆ [nhdsWithin x (insert x s)] f) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x
theorem Filter.EventuallyEq.fderivWithin' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s t : Set E} (hs : f₁ =αΆ [nhdsWithin x s] f) (ht : t βŠ† s) :
fderivWithin π•œ f₁ t =αΆ [nhdsWithin x s] fderivWithin π•œ f t
theorem Filter.EventuallyEq.fderivWithin {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (hs : f₁ =αΆ [nhdsWithin x s] f) :
fderivWithin π•œ f₁ s =αΆ [nhdsWithin x s] fderivWithin π•œ f s
theorem Filter.EventuallyEq.fderivWithin_eq_of_nhds {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (h : f₁ =αΆ [nhds x] f) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x
@[deprecated Filter.EventuallyEq.fderivWithin_eq_of_nhds (since := "2025-05-20")]
theorem Filter.EventuallyEq.fderivWithin_eq_nhds {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (h : f₁ =αΆ [nhds x] f) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x

Alias of Filter.EventuallyEq.fderivWithin_eq_of_nhds.

theorem fderivWithin_congr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (hs : Set.EqOn f₁ f s) (hx : f₁ x = f x) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x
theorem fderivWithin_congr' {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} {s : Set E} (hs : Set.EqOn f₁ f s) (hx : x ∈ s) :
fderivWithin π•œ f₁ s x = fderivWithin π•œ f s x
theorem Filter.EventuallyEq.fderiv_eq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} (h : f₁ =αΆ [nhds x] f) :
fderiv π•œ f₁ x = fderiv π•œ f x
theorem Filter.EventuallyEq.fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f f₁ : E β†’ F} {x : E} (h : f₁ =αΆ [nhds x] f) :
fderiv π•œ f₁ =αΆ [nhds x] fderiv π•œ f