The derivative of bounded linear maps #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Analysis/Calculus/FDeriv/Basic.lean
.
This file contains the usual formulas (and existence assertions) for the derivative of bounded linear maps.
Continuous linear maps #
There are currently two variants of these in mathlib, the bundled version
(named ContinuousLinearMap
, and denoted E βL[π] F
), and the unbundled version (with a
predicate IsBoundedLinearMap
). We give statements for both versions.
theorem
ContinuousLinearMap.hasStrictFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
:
HasStrictFDerivAt (βe) e x
theorem
ContinuousLinearMap.hasFDerivAtFilter
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
{L : Filter E}
:
HasFDerivAtFilter (βe) e x L
theorem
ContinuousLinearMap.hasFDerivWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
{s : Set E}
:
HasFDerivWithinAt (βe) e s x
theorem
ContinuousLinearMap.hasFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
:
HasFDerivAt (βe) e x
@[simp]
theorem
ContinuousLinearMap.differentiableAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
:
DifferentiableAt π (βe) x
theorem
ContinuousLinearMap.differentiableWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
{s : Set E}
:
DifferentiableWithinAt π (βe) s x
@[simp]
theorem
ContinuousLinearMap.fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
:
theorem
ContinuousLinearMap.fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
:
fderivWithin π (βe) s x = e
@[simp]
theorem
ContinuousLinearMap.differentiable
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
:
Differentiable π βe
theorem
ContinuousLinearMap.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(e : E βL[π] F)
{s : Set E}
:
DifferentiableOn π (βe) s
theorem
IsBoundedLinearMap.hasFDerivAtFilter
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{L : Filter E}
(h : IsBoundedLinearMap π f)
:
HasFDerivAtFilter f h.toContinuousLinearMap x L
theorem
IsBoundedLinearMap.hasFDerivWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : IsBoundedLinearMap π f)
:
HasFDerivWithinAt f h.toContinuousLinearMap s x
theorem
IsBoundedLinearMap.hasFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : IsBoundedLinearMap π f)
:
HasFDerivAt f h.toContinuousLinearMap x
theorem
IsBoundedLinearMap.differentiableAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : IsBoundedLinearMap π f)
:
DifferentiableAt π f x
theorem
IsBoundedLinearMap.differentiableWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : IsBoundedLinearMap π f)
:
DifferentiableWithinAt π f s x
theorem
IsBoundedLinearMap.fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : IsBoundedLinearMap π f)
:
_root_.fderiv π f x = h.toContinuousLinearMap
theorem
IsBoundedLinearMap.fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : IsBoundedLinearMap π f)
(hxs : UniqueDiffWithinAt π s x)
:
_root_.fderivWithin π f s x = h.toContinuousLinearMap
theorem
IsBoundedLinearMap.differentiable
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(h : IsBoundedLinearMap π f)
:
Differentiable π f
theorem
IsBoundedLinearMap.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(h : IsBoundedLinearMap π f)
:
DifferentiableOn π f s