Documentation

Mathlib.Analysis.Calculus.FDeriv.RestrictScalars

The derivative of the scalar restriction of a linear map #

For detailed documentation of the FrΓ©chet derivative, see the module docstring of Analysis/Calculus/FDeriv/Basic.lean.

This file contains the usual formulas (and existence assertions) for the derivative of the scalar restriction of a linear map.

Restricting from β„‚ to ℝ, or generally from π•œ' to π•œ #

If a function is differentiable over β„‚, then it is differentiable over ℝ. In this paragraph, we give variants of this statement, in the general situation where β„‚ and ℝ are replaced respectively by π•œ' and π•œ where π•œ' is a normed algebra over π•œ.

theorem HasStrictFDerivAt.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {f' : E β†’L[π•œ'] F} {x : E} (h : HasStrictFDerivAt f f' x) :
theorem HasFDerivAtFilter.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {f' : E β†’L[π•œ'] F} {x : E} {L : Filter E} (h : HasFDerivAtFilter f f' x L) :
theorem HasFDerivAt.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {f' : E β†’L[π•œ'] F} {x : E} (h : HasFDerivAt f f' x) :
theorem HasFDerivWithinAt.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {f' : E β†’L[π•œ'] F} {s : Set E} {x : E} (h : HasFDerivWithinAt f f' s x) :
theorem DifferentiableAt.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {x : E} (h : DifferentiableAt π•œ' f x) :
DifferentiableAt π•œ f x
theorem DifferentiableWithinAt.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {s : Set E} {x : E} (h : DifferentiableWithinAt π•œ' f s x) :
DifferentiableWithinAt π•œ f s x
theorem DifferentiableOn.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {s : Set E} (h : DifferentiableOn π•œ' f s) :
DifferentiableOn π•œ f s
theorem Differentiable.restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} (h : Differentiable π•œ' f) :
Differentiable π•œ f
theorem HasFDerivWithinAt.of_restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {f' : E β†’L[π•œ'] F} {s : Set E} {x : E} {g' : E β†’L[π•œ] F} (h : HasFDerivWithinAt f g' s x) (H : ContinuousLinearMap.restrictScalars π•œ f' = g') :
theorem hasFDerivAt_of_restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {f' : E β†’L[π•œ'] F} {x : E} {g' : E β†’L[π•œ] F} (h : HasFDerivAt f g' x) (H : ContinuousLinearMap.restrictScalars π•œ f' = g') :
theorem DifferentiableAt.fderiv_restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {x : E} (h : DifferentiableAt π•œ' f x) :
fderiv π•œ f x = ContinuousLinearMap.restrictScalars π•œ (fderiv π•œ' f x)
theorem differentiableWithinAt_iff_restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {s : Set E} {x : E} (hf : DifferentiableWithinAt π•œ f s x) (hs : UniqueDiffWithinAt π•œ s x) :
DifferentiableWithinAt π•œ' f s x ↔ βˆƒ (g' : E β†’L[π•œ'] F), ContinuousLinearMap.restrictScalars π•œ g' = fderivWithin π•œ f s x
theorem differentiableAt_iff_restrictScalars (π•œ : Type u_1) [NontriviallyNormedField π•œ] {π•œ' : Type u_2} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedSpace π•œ' F] [IsScalarTower π•œ π•œ' F] {f : E β†’ F} {x : E} (hf : DifferentiableAt π•œ f x) :
DifferentiableAt π•œ' f x ↔ βˆƒ (g' : E β†’L[π•œ'] F), ContinuousLinearMap.restrictScalars π•œ g' = fderiv π•œ f x