Documentation

Mathlib.Analysis.Calculus.TangentCone.Prod

Product of sets with unique differentiability property #

In this file we prove that the product of two sets with unique differentiability property has the same property, see UniqueDiffOn.prod.

theorem subset_tangentConeAt_prod_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {x : E} {s : Set E} {y : F} {t : Set F} (ht : y closure t) :
(LinearMap.inl 𝕜 E F) '' tangentConeAt 𝕜 s x tangentConeAt 𝕜 (s ×ˢ t) (x, y)

The tangent cone of a product contains the tangent cone of its left factor.

@[deprecated subset_tangentConeAt_prod_left (since := "2025-04-27")]
theorem subset_tangentCone_prod_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {x : E} {s : Set E} {y : F} {t : Set F} (ht : y closure t) :
(LinearMap.inl 𝕜 E F) '' tangentConeAt 𝕜 s x tangentConeAt 𝕜 (s ×ˢ t) (x, y)

Alias of subset_tangentConeAt_prod_left.


The tangent cone of a product contains the tangent cone of its left factor.

theorem subset_tangentConeAt_prod_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {x : E} {s : Set E} {y : F} {t : Set F} (hs : x closure s) :
(LinearMap.inr 𝕜 E F) '' tangentConeAt 𝕜 t y tangentConeAt 𝕜 (s ×ˢ t) (x, y)

The tangent cone of a product contains the tangent cone of its right factor.

@[deprecated subset_tangentConeAt_prod_right (since := "2025-04-27")]
theorem subset_tangentCone_prod_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {x : E} {s : Set E} {y : F} {t : Set F} (hs : x closure s) :
(LinearMap.inr 𝕜 E F) '' tangentConeAt 𝕜 t y tangentConeAt 𝕜 (s ×ˢ t) (x, y)

Alias of subset_tangentConeAt_prod_right.


The tangent cone of a product contains the tangent cone of its right factor.

theorem UniqueDiffWithinAt.prod {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {x : E} {s : Set E} {t : Set F} {y : F} (hs : UniqueDiffWithinAt 𝕜 s x) (ht : UniqueDiffWithinAt 𝕜 t y) :

The product of two sets of unique differentiability at points x and y has unique differentiability at (x, y).

theorem UniqueDiffOn.prod {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {s : Set E} {t : Set F} (hs : UniqueDiffOn 𝕜 s) (ht : UniqueDiffOn 𝕜 t) :
UniqueDiffOn 𝕜 (s ×ˢ t)

The product of two sets of unique differentiability is a set of unique differentiability.