Documentation

Mathlib.Analysis.Calculus.TangentCone.ProperSpace

Tangent cone in a proper space #

In this file we prove that the tangent cone of a set in a proper normed space at an accumulation point of this set is nontrivial.

theorem tangentConeAt_nonempty_of_properSpace {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [ProperSpace E] {s : Set E} {x : E} (hx : AccPt x (Filter.principal s)) :

In a proper space, the tangent cone at a non-isolated point is nontrivial.

@[deprecated tangentConeAt_nonempty_of_properSpace (since := "2025-04-27")]
theorem tangentCone_nonempty_of_properSpace {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [ProperSpace E] {s : Set E} {x : E} (hx : AccPt x (Filter.principal s)) :

Alias of tangentConeAt_nonempty_of_properSpace.


In a proper space, the tangent cone at a non-isolated point is nontrivial.