Documentation

Mathlib.Analysis.Complex.Convex

Theorems about convexity on the complex plane #

We show that the open and closed half-spaces in ℂ given by an inequality on either the real or imaginary part are all convex over ℝ. We also prove some results on star-convexity for the slit plane.

A version of convexHull_prod for Set.reProdIm.

The slit plane is star-convex at a positive number.

The slit plane is star-shaped at a positive real number.

The slit plane is star-shaped at 1.

theorem convex_halfSpace_re_lt (r : ) :
Convex {c : | c.re < r}
@[deprecated convex_halfSpace_re_lt]
theorem convex_halfspace_re_lt (r : ) :
Convex {c : | c.re < r}

Alias of convex_halfSpace_re_lt.

theorem convex_halfSpace_re_le (r : ) :
Convex {c : | c.re r}
@[deprecated convex_halfSpace_re_le]
theorem convex_halfspace_re_le (r : ) :
Convex {c : | c.re r}

Alias of convex_halfSpace_re_le.

theorem convex_halfSpace_re_gt (r : ) :
Convex {c : | r < c.re}
@[deprecated convex_halfSpace_re_gt]
theorem convex_halfspace_re_gt (r : ) :
Convex {c : | r < c.re}

Alias of convex_halfSpace_re_gt.

theorem convex_halfSpace_re_ge (r : ) :
Convex {c : | r c.re}
@[deprecated convex_halfSpace_re_ge]
theorem convex_halfspace_re_ge (r : ) :
Convex {c : | r c.re}

Alias of convex_halfSpace_re_ge.

theorem convex_halfSpace_im_lt (r : ) :
Convex {c : | c.im < r}
@[deprecated convex_halfSpace_im_lt]
theorem convex_halfspace_im_lt (r : ) :
Convex {c : | c.im < r}

Alias of convex_halfSpace_im_lt.

theorem convex_halfSpace_im_le (r : ) :
Convex {c : | c.im r}
@[deprecated convex_halfSpace_im_le]
theorem convex_halfspace_im_le (r : ) :
Convex {c : | c.im r}

Alias of convex_halfSpace_im_le.

theorem convex_halfSpace_im_gt (r : ) :
Convex {c : | r < c.im}
@[deprecated convex_halfSpace_im_gt]
theorem convex_halfspace_im_gt (r : ) :
Convex {c : | r < c.im}

Alias of convex_halfSpace_im_gt.

theorem convex_halfSpace_im_ge (r : ) :
Convex {c : | r c.im}
@[deprecated convex_halfSpace_im_ge]
theorem convex_halfspace_im_ge (r : ) :
Convex {c : | r c.im}

Alias of convex_halfSpace_im_ge.

theorem Complex.isConnected_of_upperHalfPlane {r : } {s : Set } (hs₁ : {z : | r < z.im} s) (hs₂ : s {z : | r z.im}) :
theorem Complex.isConnected_of_lowerHalfPlane {r : } {s : Set } (hs₁ : {z : | z.im < r} s) (hs₂ : s {z : | z.im r}) :