Documentation

Mathlib.Analysis.Convex.StrictCombination

Convex combinations in strictly convex sets and spaces. #

This file proves lemmas about convex combinations of points in strictly convex sets and strictly convex spaces.

theorem StrictConvex.centerMass_mem_interior {R : Type u_1} {V : Type u_2} {ι : Type u_4} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [TopologicalSpace V] [AddCommGroup V] [Module R V] {s : Set V} {t : Finset ι} {w : ιR} {z : ιV} (hs : StrictConvex R s) :
(∀ it, 0 w i)∀ (i j : ι), i tj tz i z jw i 0w j 0(∀ it, z i s)t.centerMass w z interior s
theorem StrictConvex.sum_mem_interior {R : Type u_1} {V : Type u_2} {ι : Type u_4} [Field R] [LinearOrder R] [IsStrictOrderedRing R] [TopologicalSpace V] [AddCommGroup V] [Module R V] {s : Set V} {t : Finset ι} {w : ιR} {z : ιV} (hs : StrictConvex R s) (h0 : it, 0 w i) (h1 : it, w i = 1) {i j : ι} (hi : i t) (hj : j t) (hij : z i z j) (hi0 : w i 0) (hj0 : w j 0) (hz : it, z i s) :
kt, w k z k interior s
theorem centerMass_mem_ball_of_strictConvexSpace {V : Type u_2} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace V] [StrictConvexSpace V] {t : Finset ι} {w : ι} {p : V} {r : } {z : ιV} (h0 : it, 0 w i) {i j : ι} (hi : i t) (hj : j t) (hij : z i z j) (hi0 : w i 0) (hj0 : w j 0) (hz : it, z i Metric.closedBall p r) :
theorem sum_mem_ball_of_strictConvexSpace {V : Type u_2} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace V] [StrictConvexSpace V] {t : Finset ι} {w : ι} {p : V} {r : } {z : ιV} (h0 : it, 0 w i) (h1 : it, w i = 1) {i j : ι} (hi : i t) (hj : j t) (hij : z i z j) (hi0 : w i 0) (hj0 : w j 0) (hz : it, z i Metric.closedBall p r) :
kt, w k z k Metric.ball p r
theorem norm_sum_lt_of_strictConvexSpace {V : Type u_2} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace V] [StrictConvexSpace V] {t : Finset ι} {w : ι} {r : } {z : ιV} (h0 : it, 0 w i) (h1 : it, w i = 1) {i j : ι} (hi : i t) (hj : j t) (hij : z i z j) (hi0 : w i 0) (hj0 : w j 0) (hz : it, z i r) :
kt, w k z k < r
theorem dist_affineCombination_lt_of_strictConvexSpace {V : Type u_2} {P : Type u_3} {ι : Type u_4} [NormedAddCommGroup V] [NormedSpace V] [StrictConvexSpace V] [PseudoMetricSpace P] [NormedAddTorsor V P] {t : Finset ι} {w : ι} {p₀ : P} {r : } {p : ιP} (h0 : it, 0 w i) (h1 : it, w i = 1) {i j : ι} (hi : i t) (hj : j t) (hij : p i p j) (hi0 : w i 0) (hj0 : w j 0) (hp : it, dist (p i) p₀ r) :
theorem Affine.Simplex.dist_lt_of_mem_closedInterior_of_strictConvexSpace {V : Type u_2} {P : Type u_3} [NormedAddCommGroup V] [NormedSpace V] [StrictConvexSpace V] [PseudoMetricSpace P] [NormedAddTorsor V P] {n : } (s : Simplex P n) {r : } {p₀ p : P} (hp : p s.closedInterior) (hp' : ∀ (i : Fin (n + 1)), p s.points i) (hr : ∀ (i : Fin (n + 1)), dist (s.points i) p₀ r) :
dist p p₀ < r
theorem Affine.Simplex.dist_lt_of_mem_interior_of_strictConvexSpace {V : Type u_2} {P : Type u_3} [NormedAddCommGroup V] [NormedSpace V] [StrictConvexSpace V] [PseudoMetricSpace P] [NormedAddTorsor V P] {n : } (s : Simplex P n) {r : } {p₀ p : P} (hp : p s.interior) (hr : ∀ (i : Fin (n + 1)), dist (s.points i) p₀ r) :
dist p p₀ < r