Convex combinations in strictly convex sets and spaces. #
This file proves lemmas about convex combinations of points in strictly convex sets and strictly convex spaces.
theorem
StrictConvex.centerMass_mem_interior
{R : Type u_1}
{V : Type u_2}
{ι : Type u_4}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[TopologicalSpace V]
[AddCommGroup V]
[Module R V]
{s : Set V}
{t : Finset ι}
{w : ι → R}
{z : ι → V}
(hs : StrictConvex R s)
:
theorem
StrictConvex.sum_mem_interior
{R : Type u_1}
{V : Type u_2}
{ι : Type u_4}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[TopologicalSpace V]
[AddCommGroup V]
[Module R V]
{s : Set V}
{t : Finset ι}
{w : ι → R}
{z : ι → V}
(hs : StrictConvex R s)
(h0 : ∀ i ∈ t, 0 ≤ w i)
(h1 : ∑ i ∈ t, w i = 1)
{i j : ι}
(hi : i ∈ t)
(hj : j ∈ t)
(hij : z i ≠ z j)
(hi0 : w i ≠ 0)
(hj0 : w j ≠ 0)
(hz : ∀ i ∈ t, z i ∈ s)
:
theorem
centerMass_mem_ball_of_strictConvexSpace
{V : Type u_2}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[StrictConvexSpace ℝ V]
{t : Finset ι}
{w : ι → ℝ}
{p : V}
{r : ℝ}
{z : ι → V}
(h0 : ∀ i ∈ t, 0 ≤ w i)
{i j : ι}
(hi : i ∈ t)
(hj : j ∈ t)
(hij : z i ≠ z j)
(hi0 : w i ≠ 0)
(hj0 : w j ≠ 0)
(hz : ∀ i ∈ t, z i ∈ Metric.closedBall p r)
:
theorem
sum_mem_ball_of_strictConvexSpace
{V : Type u_2}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[StrictConvexSpace ℝ V]
{t : Finset ι}
{w : ι → ℝ}
{p : V}
{r : ℝ}
{z : ι → V}
(h0 : ∀ i ∈ t, 0 ≤ w i)
(h1 : ∑ i ∈ t, w i = 1)
{i j : ι}
(hi : i ∈ t)
(hj : j ∈ t)
(hij : z i ≠ z j)
(hi0 : w i ≠ 0)
(hj0 : w j ≠ 0)
(hz : ∀ i ∈ t, z i ∈ Metric.closedBall p r)
:
theorem
norm_sum_lt_of_strictConvexSpace
{V : Type u_2}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[StrictConvexSpace ℝ V]
{t : Finset ι}
{w : ι → ℝ}
{r : ℝ}
{z : ι → V}
(h0 : ∀ i ∈ t, 0 ≤ w i)
(h1 : ∑ i ∈ t, w i = 1)
{i j : ι}
(hi : i ∈ t)
(hj : j ∈ t)
(hij : z i ≠ z j)
(hi0 : w i ≠ 0)
(hj0 : w j ≠ 0)
(hz : ∀ i ∈ t, ‖z i‖ ≤ r)
:
theorem
dist_affineCombination_lt_of_strictConvexSpace
{V : Type u_2}
{P : Type u_3}
{ι : Type u_4}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[StrictConvexSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{t : Finset ι}
{w : ι → ℝ}
{p₀ : P}
{r : ℝ}
{p : ι → P}
(h0 : ∀ i ∈ t, 0 ≤ w i)
(h1 : ∑ i ∈ t, w i = 1)
{i j : ι}
(hi : i ∈ t)
(hj : j ∈ t)
(hij : p i ≠ p j)
(hi0 : w i ≠ 0)
(hj0 : w j ≠ 0)
(hp : ∀ i ∈ t, dist (p i) p₀ ≤ r)
:
theorem
Affine.Simplex.dist_lt_of_mem_closedInterior_of_strictConvexSpace
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[StrictConvexSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{n : ℕ}
(s : Simplex ℝ P n)
{r : ℝ}
{p₀ p : P}
(hp : p ∈ s.closedInterior)
(hp' : ∀ (i : Fin (n + 1)), p ≠ s.points i)
(hr : ∀ (i : Fin (n + 1)), dist (s.points i) p₀ ≤ r)
:
theorem
Affine.Simplex.dist_lt_of_mem_interior_of_strictConvexSpace
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[StrictConvexSpace ℝ V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{n : ℕ}
(s : Simplex ℝ P n)
{r : ℝ}
{p₀ p : P}
(hp : p ∈ s.interior)
(hr : ∀ (i : Fin (n + 1)), dist (s.points i) p₀ ≤ r)
: