Orthogonality of characters of a finite abelian group #
This file proves that characters of a finite abelian group are orthogonal, and in particular that there are at most as many characters as there are elements of the group.
theorem
AddChar.wInner_cWeight_self
{G : Type u_1}
{R : Type u_3}
[AddGroup G]
[RCLike R]
[Fintype G]
(ψ : AddChar G R)
:
RCLike.wInner RCLike.cWeight ⇑ψ ⇑ψ = 1
theorem
AddChar.wInner_cWeight_eq_boole
{G : Type u_1}
{R : Type u_3}
[AddCommGroup G]
[RCLike R]
[Fintype G]
(ψ₁ ψ₂ : AddChar G R)
:
RCLike.wInner RCLike.cWeight ⇑ψ₁ ⇑ψ₂ = if ψ₁ = ψ₂ then 1 else 0
theorem
AddChar.wInner_cWeight_eq_zero_iff_ne
{G : Type u_1}
{R : Type u_3}
[AddCommGroup G]
[RCLike R]
{ψ₁ ψ₂ : AddChar G R}
[Fintype G]
:
RCLike.wInner RCLike.cWeight ⇑ψ₁ ⇑ψ₂ = 0 ↔ ψ₁ ≠ ψ₂
theorem
AddChar.wInner_cWeight_eq_one_iff_eq
{G : Type u_1}
{R : Type u_3}
[AddCommGroup G]
[RCLike R]
{ψ₁ ψ₂ : AddChar G R}
[Fintype G]
:
RCLike.wInner RCLike.cWeight ⇑ψ₁ ⇑ψ₂ = 1 ↔ ψ₁ = ψ₂
theorem
AddChar.linearIndependent
(G : Type u_1)
(R : Type u_3)
[AddCommGroup G]
[RCLike R]
[Finite G]
:
LinearIndependent R DFunLike.coe
noncomputable instance
AddChar.instFintype
(G : Type u_1)
(R : Type u_3)
[AddCommGroup G]
[RCLike R]
[Finite G]
:
Equations
- AddChar.instFintype G R = Fintype.ofFinite (AddChar G R)
@[simp]
theorem
AddChar.card_addChar_le
(G : Type u_1)
(R : Type u_3)
[AddCommGroup G]
[RCLike R]
[Fintype G]
:
Fintype.card (AddChar G R) ≤ Fintype.card G