Documentation

Mathlib.Analysis.Fourier.FourierTransform

The Fourier transform #

We set up the Fourier transform for complex-valued functions on finite-dimensional spaces.

Design choices #

In namespace VectorFourier, we define the Fourier integral in the following context:

With these definitions, we define fourierIntegral to be the map from functions V β†’ E to functions W β†’ E that sends f to

fun w ↦ ∫ v in V, e (-L v w) β€’ f v βˆ‚ΞΌ,

This includes the cases W is the dual of V and L is the canonical pairing, or W = V and L is a bilinear form (e.g. an inner product).

In namespace Fourier, we consider the more familiar special case when V = W = π•œ and L is the multiplication map (but still allowing π•œ to be an arbitrary ring equipped with a measure).

The most familiar case of all is when V = W = π•œ = ℝ, L is multiplication, ΞΌ is volume, and e is Real.fourierChar, i.e. the character fun x ↦ exp ((2 * Ο€ * x) * I) (for which we introduce the notation 𝐞 in the locale FourierTransform).

Another familiar case (which generalizes the previous one) is when V = W is an inner product space over ℝ and L is the scalar product. We introduce two notations 𝓕 for the Fourier transform in this case and 𝓕⁻ f (v) = 𝓕 f (-v) for the inverse Fourier transform. These notations make in particular sense for V = W = ℝ.

Main results #

At present the only nontrivial lemma we prove is fourierIntegral_continuous, stating that the Fourier transform of an integrable function is continuous (under mild assumptions).

Fourier theory for functions on general vector spaces #

def VectorFourier.fourierIntegral {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure V) (L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)) (f : V β†’ E) (w : W) :
E

The Fourier transform integral for f : V β†’ E, with respect to a bilinear form L : V Γ— W β†’ π•œ and an additive character e.

Equations
Instances For
    theorem VectorFourier.fourierIntegral_const_smul {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure V) (L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)) (f : V β†’ E) (r : Complex) :
    Eq (fourierIntegral e ΞΌ L (HSMul.hSMul r f)) (HSMul.hSMul r (fourierIntegral e ΞΌ L f))
    theorem VectorFourier.norm_fourierIntegral_le_integral_norm {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure V) (L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)) (f : V β†’ E) (w : W) :
    LE.le (Norm.norm (fourierIntegral e ΞΌ L f w)) (MeasureTheory.integral ΞΌ fun (v : V) => Norm.norm (f v))

    The uniform norm of the Fourier integral of f is bounded by the LΒΉ norm of f.

    theorem VectorFourier.fourierIntegral_comp_add_right {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] [MeasurableAdd V] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure V) [ΞΌ.IsAddRightInvariant] (L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)) (f : V β†’ E) (vβ‚€ : V) :
    Eq (fourierIntegral e ΞΌ L (Function.comp f fun (v : V) => HAdd.hAdd v vβ‚€)) fun (w : W) => HSMul.hSMul (DFunLike.coe e (DFunLike.coe (DFunLike.coe L vβ‚€) w)) (fourierIntegral e ΞΌ L f w)

    The Fourier integral converts right-translation into scalar multiplication by a phase factor.

    In this section we assume π•œ, V, W have topologies, and L, e are continuous (but f needn't be). This is used to ensure that e (-L v w) is (a.e. strongly) measurable. We could get away with imposing only a measurable-space structure on π•œ (it doesn't have to be the Borel sigma-algebra of a topology); but it seems hard to imagine cases where this extra generality would be useful, and allowing it would complicate matters in the most important use cases.

    theorem VectorFourier.fourierIntegral_convergent_iff {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] [TopologicalSpace π•œ] [IsTopologicalRing π•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)} (he : Continuous (DFunLike.coe e)) (hL : Continuous fun (p : Prod V W) => DFunLike.coe (DFunLike.coe L p.fst) p.snd) {f : V β†’ E} (w : W) :

    For any w, the Fourier integral is convergent iff f is integrable.

    theorem VectorFourier.fourierIntegral_add {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] [TopologicalSpace π•œ] [IsTopologicalRing π•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)} (he : Continuous (DFunLike.coe e)) (hL : Continuous fun (p : Prod V W) => DFunLike.coe (DFunLike.coe L p.fst) p.snd) {f g : V β†’ E} (hf : MeasureTheory.Integrable f ΞΌ) (hg : MeasureTheory.Integrable g ΞΌ) :
    Eq (fourierIntegral e ΞΌ L (HAdd.hAdd f g)) (HAdd.hAdd (fourierIntegral e ΞΌ L f) (fourierIntegral e ΞΌ L g))
    theorem VectorFourier.fourierIntegral_continuous {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace Complex E] [TopologicalSpace π•œ] [IsTopologicalRing π•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)} [FirstCountableTopology W] (he : Continuous (DFunLike.coe e)) (hL : Continuous fun (p : Prod V W) => DFunLike.coe (DFunLike.coe L p.fst) p.snd) {f : V β†’ E} (hf : MeasureTheory.Integrable f ΞΌ) :

    The Fourier integral of an L^1 function is a continuous function.

    theorem VectorFourier.integral_bilin_fourierIntegral_eq_flip {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace Complex E] [NormedAddCommGroup F] [NormedSpace Complex F] [NormedAddCommGroup G] [NormedSpace Complex G] [TopologicalSpace π•œ] [IsTopologicalRing π•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] [MeasurableSpace W] [BorelSpace W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)} {Ξ½ : MeasureTheory.Measure W} [MeasureTheory.SigmaFinite ΞΌ] [MeasureTheory.SigmaFinite Ξ½] [SecondCountableTopology V] [CompleteSpace E] [CompleteSpace F] {f : V β†’ E} {g : W β†’ F} (M : ContinuousLinearMap (RingHom.id Complex) E (ContinuousLinearMap (RingHom.id Complex) F G)) (he : Continuous (DFunLike.coe e)) (hL : Continuous fun (p : Prod V W) => DFunLike.coe (DFunLike.coe L p.fst) p.snd) (hf : MeasureTheory.Integrable f ΞΌ) (hg : MeasureTheory.Integrable g Ξ½) :
    Eq (MeasureTheory.integral Ξ½ fun (ΞΎ : W) => DFunLike.coe (DFunLike.coe M (fourierIntegral e ΞΌ L f ΞΎ)) (g ΞΎ)) (MeasureTheory.integral ΞΌ fun (x : V) => DFunLike.coe (DFunLike.coe M (f x)) (fourierIntegral e Ξ½ L.flip g x))

    The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint. Version where the multiplication is replaced by a general bilinear form M.

    theorem VectorFourier.integral_fourierIntegral_smul_eq_flip {π•œ : Type u_1} [CommRing π•œ] {V : Type u_2} [AddCommGroup V] [Module π•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module π•œ W] {F : Type u_5} [NormedAddCommGroup F] [NormedSpace Complex F] [TopologicalSpace π•œ] [IsTopologicalRing π•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] [MeasurableSpace W] [BorelSpace W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : LinearMap (RingHom.id π•œ) V (LinearMap (RingHom.id π•œ) W π•œ)} {Ξ½ : MeasureTheory.Measure W} [MeasureTheory.SigmaFinite ΞΌ] [MeasureTheory.SigmaFinite Ξ½] [SecondCountableTopology V] [CompleteSpace F] {f : V β†’ Complex} {g : W β†’ F} (he : Continuous (DFunLike.coe e)) (hL : Continuous fun (p : Prod V W) => DFunLike.coe (DFunLike.coe L p.fst) p.snd) (hf : MeasureTheory.Integrable f ΞΌ) (hg : MeasureTheory.Integrable g Ξ½) :
    Eq (MeasureTheory.integral Ξ½ fun (ΞΎ : W) => HSMul.hSMul (fourierIntegral e ΞΌ L f ΞΎ) (g ΞΎ)) (MeasureTheory.integral ΞΌ fun (x : V) => HSMul.hSMul (f x) (fourierIntegral e Ξ½ L.flip g x))

    The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint.

    theorem VectorFourier.fourierIntegral_continuousLinearMap_apply {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} {V : Type u_5} {W : Type u_6} [NontriviallyNormedField π•œ] [NormedAddCommGroup V] [NormedSpace π•œ V] [MeasurableSpace V] [BorelSpace V] [NormedAddCommGroup W] [NormedSpace π•œ W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : ContinuousLinearMap (RingHom.id π•œ) V (ContinuousLinearMap (RingHom.id π•œ) W π•œ)} [NormedAddCommGroup F] [NormedSpace Real F] [NormedAddCommGroup E] [NormedSpace Complex E] {f : V β†’ ContinuousLinearMap (RingHom.id Real) F E} {a : F} {w : W} (he : Continuous (DFunLike.coe e)) (hf : MeasureTheory.Integrable f ΞΌ) :
    Eq (DFunLike.coe (fourierIntegral e ΞΌ L.toLinearMapβ‚‚ f w) a) (fourierIntegral e ΞΌ L.toLinearMapβ‚‚ (fun (x : V) => DFunLike.coe (f x) a) w)
    theorem VectorFourier.fourierIntegral_continuousMultilinearMap_apply {π•œ : Type u_1} {ΞΉ : Type u_2} {E : Type u_3} {V : Type u_5} {W : Type u_6} [Fintype ΞΉ] [NontriviallyNormedField π•œ] [NormedAddCommGroup V] [NormedSpace π•œ V] [MeasurableSpace V] [BorelSpace V] [NormedAddCommGroup W] [NormedSpace π•œ W] {e : AddChar π•œ Circle} {ΞΌ : MeasureTheory.Measure V} {L : ContinuousLinearMap (RingHom.id π•œ) V (ContinuousLinearMap (RingHom.id π•œ) W π•œ)} [NormedAddCommGroup E] [NormedSpace Complex E] {M : ΞΉ β†’ Type u_7} [(i : ΞΉ) β†’ NormedAddCommGroup (M i)] [(i : ΞΉ) β†’ NormedSpace Real (M i)] {f : V β†’ ContinuousMultilinearMap Real M E} {m : (i : ΞΉ) β†’ M i} {w : W} (he : Continuous (DFunLike.coe e)) (hf : MeasureTheory.Integrable f ΞΌ) :
    Eq (DFunLike.coe (fourierIntegral e ΞΌ L.toLinearMapβ‚‚ f w) m) (fourierIntegral e ΞΌ L.toLinearMapβ‚‚ (fun (x : V) => DFunLike.coe (f x) m) w)

    Fourier theory for functions on π•œ #

    def Fourier.fourierIntegral {π•œ : Type u_1} [CommRing π•œ] [MeasurableSpace π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure π•œ) (f : π•œ β†’ E) (w : π•œ) :
    E

    The Fourier transform integral for f : π•œ β†’ E, with respect to the measure ΞΌ and additive character e.

    Equations
    Instances For
      theorem Fourier.fourierIntegral_def {π•œ : Type u_1} [CommRing π•œ] [MeasurableSpace π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure π•œ) (f : π•œ β†’ E) (w : π•œ) :
      Eq (fourierIntegral e ΞΌ f w) (MeasureTheory.integral ΞΌ fun (v : π•œ) => HSMul.hSMul (DFunLike.coe e (Neg.neg (HMul.hMul v w))) (f v))
      theorem Fourier.fourierIntegral_const_smul {π•œ : Type u_1} [CommRing π•œ] [MeasurableSpace π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure π•œ) (f : π•œ β†’ E) (r : Complex) :
      theorem Fourier.norm_fourierIntegral_le_integral_norm {π•œ : Type u_1} [CommRing π•œ] [MeasurableSpace π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Complex E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure π•œ) (f : π•œ β†’ E) (w : π•œ) :
      LE.le (Norm.norm (fourierIntegral e ΞΌ f w)) (MeasureTheory.integral ΞΌ fun (x : π•œ) => Norm.norm (f x))

      The uniform norm of the Fourier transform of f is bounded by the LΒΉ norm of f.

      theorem Fourier.fourierIntegral_comp_add_right {π•œ : Type u_1} [CommRing π•œ] [MeasurableSpace π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace Complex E] [MeasurableAdd π•œ] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure π•œ) [ΞΌ.IsAddRightInvariant] (f : π•œ β†’ E) (vβ‚€ : π•œ) :
      Eq (fourierIntegral e ΞΌ (Function.comp f fun (v : π•œ) => HAdd.hAdd v vβ‚€)) fun (w : π•œ) => HSMul.hSMul (DFunLike.coe e (HMul.hMul vβ‚€ w)) (fourierIntegral e ΞΌ f w)

      The Fourier transform converts right-translation into scalar multiplication by a phase factor.

      The standard additive character of ℝ, given by fun x ↦ exp (2 * Ο€ * x * I). Denoted as 𝐞 within the Real.FourierTransform namespace.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The standard additive character of ℝ, given by fun x ↦ exp (2 * Ο€ * x * I). Denoted as 𝐞 within the Real.FourierTransform namespace.

        Equations
        Instances For

          The Fourier integral is well defined iff the function is integrable. Version with a general continuous bilinear function L. For the specialization to the inner product in an inner product space, see Real.fourierIntegral_convergent_iff.

          theorem Real.fourierIntegral_continuousMultilinearMap_apply' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {ΞΉ : Type u_2} {V : Type u_4} {W : Type u_5} [Fintype ΞΉ] [NormedAddCommGroup V] [NormedSpace Real V] [MeasurableSpace V] [BorelSpace V] [NormedAddCommGroup W] [NormedSpace Real W] {ΞΌ : MeasureTheory.Measure V} {L : ContinuousLinearMap (RingHom.id Real) V (ContinuousLinearMap (RingHom.id Real) W Real)} {M : ΞΉ β†’ Type u_6} [(i : ΞΉ) β†’ NormedAddCommGroup (M i)] [(i : ΞΉ) β†’ NormedSpace Real (M i)] {f : V β†’ ContinuousMultilinearMap Real M E} {m : (i : ΞΉ) β†’ M i} {w : W} (hf : MeasureTheory.Integrable f ΞΌ) :

          The Fourier transform of a function on an inner product space, with respect to the standard additive character Ο‰ ↦ exp (2 i Ο€ Ο‰). Denoted as 𝓕 within the Real.FourierTransform namespace.

          Equations
          Instances For

            The inverse Fourier transform of a function on an inner product space, defined as the Fourier transform but with opposite sign in the exponential. Denoted as 𝓕⁻¹ within the Real.FourierTransform namespace.

            Equations
            Instances For

              The Fourier transform of a function on an inner product space, with respect to the standard additive character Ο‰ ↦ exp (2 i Ο€ Ο‰). Denoted as 𝓕 within the Real.FourierTransform namespace.

              Equations
              Instances For

                The inverse Fourier transform of a function on an inner product space, defined as the Fourier transform but with opposite sign in the exponential. Denoted as 𝓕⁻¹ within the Real.FourierTransform namespace.

                Equations
                Instances For
                  theorem Real.fourierIntegral_continuousMultilinearMap_apply {E : Type u_1} [NormedAddCommGroup E] [NormedSpace Complex E] {V : Type u_2} [NormedAddCommGroup V] [InnerProductSpace Real V] [MeasurableSpace V] [BorelSpace V] [FiniteDimensional Real V] {ΞΉ : Type u_4} [Fintype ΞΉ] {M : ΞΉ β†’ Type u_5} [(i : ΞΉ) β†’ NormedAddCommGroup (M i)] [(i : ΞΉ) β†’ NormedSpace Real (M i)] {f : V β†’ ContinuousMultilinearMap Real M E} {m : (i : ΞΉ) β†’ M i} {v : V} (hf : MeasureTheory.Integrable f MeasureTheory.MeasureSpace.volume) :
                  Eq (DFunLike.coe (fourierIntegral f v) m) (fourierIntegral (fun (x : V) => DFunLike.coe (f x) m) v)