Documentation

Mathlib.Analysis.Fourier.FourierTransform

The Fourier transform #

We set up the Fourier transform for complex-valued functions on finite-dimensional spaces.

Design choices #

In namespace VectorFourier, we define the Fourier integral in the following context:

With these definitions, we define fourierIntegral to be the map from functions V โ†’ E to functions W โ†’ E that sends f to

fun w โ†ฆ โˆซ v in V, e (-L v w) โ€ข f v โˆ‚ฮผ,

This includes the cases W is the dual of V and L is the canonical pairing, or W = V and L is a bilinear form (e.g. an inner product).

In namespace Fourier, we consider the more familiar special case when V = W = ๐•œ and L is the multiplication map (but still allowing ๐•œ to be an arbitrary ring equipped with a measure).

The most familiar case of all is when V = W = ๐•œ = โ„, L is multiplication, ฮผ is volume, and e is Real.fourierChar, i.e. the character fun x โ†ฆ exp ((2 * ฯ€ * x) * I) (for which we introduced the notation ๐ž in the scope FourierTransform).

Another familiar case (which generalizes the previous one) is when V = W is an inner product space over โ„ and L is the scalar product. We introduce two notations ๐“• for the Fourier transform in this case and ๐“•โป f (v) = ๐“• f (-v) for the inverse Fourier transform. These notations make in particular sense for V = W = โ„.

Main results #

At present the only nontrivial lemma we prove is fourierIntegral_continuous, stating that the Fourier transform of an integrable function is continuous (under mild assumptions).

Fourier theory for functions on general vector spaces #

def VectorFourier.fourierIntegral {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure V) (L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ) (f : V โ†’ E) (w : W) :
E

The Fourier transform integral for f : V โ†’ E, with respect to a bilinear form L : V ร— W โ†’ ๐•œ and an additive character e.

Equations
Instances For
    theorem VectorFourier.fourierIntegral_const_smul {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure V) (L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ) (f : V โ†’ E) (r : โ„‚) :
    fourierIntegral e ฮผ L (r โ€ข f) = r โ€ข fourierIntegral e ฮผ L f
    theorem VectorFourier.norm_fourierIntegral_le_integral_norm {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure V) (L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ) (f : V โ†’ E) (w : W) :

    The uniform norm of the Fourier integral of f is bounded by the Lยน norm of f.

    theorem VectorFourier.fourierIntegral_comp_add_right {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [MeasurableAdd V] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure V) [ฮผ.IsAddRightInvariant] (L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ) (f : V โ†’ E) (vโ‚€ : V) :
    fourierIntegral e ฮผ L (f โˆ˜ fun (v : V) => v + vโ‚€) = fun (w : W) => e ((L vโ‚€) w) โ€ข fourierIntegral e ฮผ L f w

    The Fourier integral converts right-translation into scalar multiplication by a phase factor.

    In this section we assume ๐•œ, V, W have topologies, and L, e are continuous (but f needn't be).

    This is used to ensure that e (-L v w) is (a.e. strongly) measurable. We could get away with imposing only a measurable-space structure on ๐•œ (it doesn't have to be the Borel sigma-algebra of a topology); but it seems hard to imagine cases where this extra generality would be useful, and allowing it would complicate matters in the most important use cases.

    theorem VectorFourier.fourierIntegral_convergent_iff {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) {f : V โ†’ E} (w : W) :
    MeasureTheory.Integrable (fun (v : V) => e (-(L v) w) โ€ข f v) ฮผ โ†” MeasureTheory.Integrable f ฮผ

    For any w, the Fourier integral is convergent iff f is integrable.

    theorem VectorFourier.fourierIntegral_add {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) {f g : V โ†’ E} (hf : MeasureTheory.Integrable f ฮผ) (hg : MeasureTheory.Integrable g ฮผ) :
    fourierIntegral e ฮผ L (f + g) = fourierIntegral e ฮผ L f + fourierIntegral e ฮผ L g
    theorem VectorFourier.fourierIntegral_continuous {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} [FirstCountableTopology W] (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) {f : V โ†’ E} (hf : MeasureTheory.Integrable f ฮผ) :

    The Fourier integral of an L^1 function is a continuous function.

    theorem VectorFourier.integral_fourierIntegral_swap {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [NormedAddCommGroup F] [NormedSpace โ„‚ F] [NormedAddCommGroup G] [NormedSpace โ„‚ G] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] [MeasurableSpace W] [BorelSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} {ฮฝ : MeasureTheory.Measure W} [MeasureTheory.SigmaFinite ฮผ] [MeasureTheory.SigmaFinite ฮฝ] [SecondCountableTopology V] {ฯƒ : โ„‚ โ†’+* โ„‚} [RingHomIsometric ฯƒ] {f : V โ†’ E} {g : W โ†’ F} (M : F โ†’L[โ„‚] E โ†’SL[ฯƒ] G) (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) (hf : MeasureTheory.Integrable f ฮผ) (hg : MeasureTheory.Integrable g ฮฝ) :
    โˆซ (ฮพ : W), โˆซ (x : V), (M (g ฮพ)) (e (-(L x) ฮพ) โ€ข f x) โˆ‚ฮผ โˆ‚ฮฝ = โˆซ (x : V), โˆซ (ฮพ : W), (M (g ฮพ)) (e (-(L x) ฮพ) โ€ข f x) โˆ‚ฮฝ โˆ‚ฮผ

    Fubini's theorem for the Fourier integral.

    This is the main technical step in proving both Parseval's identity and self-adjointness of the Fourier transform.

    theorem VectorFourier.integral_bilin_fourierIntegral_eq_flip {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [NormedAddCommGroup F] [NormedSpace โ„‚ F] [NormedAddCommGroup G] [NormedSpace โ„‚ G] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] [MeasurableSpace W] [BorelSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} {ฮฝ : MeasureTheory.Measure W} [MeasureTheory.SigmaFinite ฮผ] [MeasureTheory.SigmaFinite ฮฝ] [SecondCountableTopology V] [CompleteSpace E] [CompleteSpace F] {f : V โ†’ E} {g : W โ†’ F} (M : E โ†’L[โ„‚] F โ†’L[โ„‚] G) (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) (hf : MeasureTheory.Integrable f ฮผ) (hg : MeasureTheory.Integrable g ฮฝ) :
    โˆซ (ฮพ : W), (M (fourierIntegral e ฮผ L f ฮพ)) (g ฮพ) โˆ‚ฮฝ = โˆซ (x : V), (M (f x)) (fourierIntegral e ฮฝ L.flip g x) โˆ‚ฮผ

    The Fourier transform satisfies โˆซ ๐“• f * g = โˆซ f * ๐“• g, i.e., it is self-adjoint.

    Version where the multiplication is replaced by a general bilinear form M.

    theorem VectorFourier.integral_fourierIntegral_smul_eq_flip {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {F : Type u_5} [NormedAddCommGroup F] [NormedSpace โ„‚ F] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] [MeasurableSpace W] [BorelSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} {ฮฝ : MeasureTheory.Measure W} [MeasureTheory.SigmaFinite ฮผ] [MeasureTheory.SigmaFinite ฮฝ] [SecondCountableTopology V] [CompleteSpace F] {f : V โ†’ โ„‚} {g : W โ†’ F} (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) (hf : MeasureTheory.Integrable f ฮผ) (hg : MeasureTheory.Integrable g ฮฝ) :
    โˆซ (ฮพ : W), fourierIntegral e ฮผ L f ฮพ โ€ข g ฮพ โˆ‚ฮฝ = โˆซ (x : V), f x โ€ข fourierIntegral e ฮฝ L.flip g x โˆ‚ฮผ

    The Fourier transform satisfies โˆซ ๐“• f * g = โˆซ f * ๐“• g, i.e., it is self-adjoint.

    theorem VectorFourier.integral_sesq_fourierIntegral_eq_neg_flip {๐•œ : Type u_1} [CommRing ๐•œ] {V : Type u_2} [AddCommGroup V] [Module ๐•œ V] [MeasurableSpace V] {W : Type u_3} [AddCommGroup W] [Module ๐•œ W] {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [NormedAddCommGroup F] [NormedSpace โ„‚ F] [NormedAddCommGroup G] [NormedSpace โ„‚ G] [TopologicalSpace ๐•œ] [IsTopologicalRing ๐•œ] [TopologicalSpace V] [BorelSpace V] [TopologicalSpace W] [MeasurableSpace W] [BorelSpace W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’โ‚—[๐•œ] W โ†’โ‚—[๐•œ] ๐•œ} {ฮฝ : MeasureTheory.Measure W} [MeasureTheory.SigmaFinite ฮผ] [MeasureTheory.SigmaFinite ฮฝ] [SecondCountableTopology V] [CompleteSpace E] [CompleteSpace F] {f : V โ†’ E} {g : W โ†’ F} (M : E โ†’Lโ‹†[โ„‚] F โ†’L[โ„‚] G) (he : Continuous โ‡‘e) (hL : Continuous fun (p : V ร— W) => (L p.1) p.2) (hf : MeasureTheory.Integrable f ฮผ) (hg : MeasureTheory.Integrable g ฮฝ) :
    โˆซ (ฮพ : W), (M (fourierIntegral e ฮผ L f ฮพ)) (g ฮพ) โˆ‚ฮฝ = โˆซ (x : V), (M (f x)) (fourierIntegral e ฮฝ (-L.flip) g x) โˆ‚ฮผ

    The Fourier transform satisfies โˆซ ๐“• f * conj g = โˆซ f * conj (๐“•โปยน g), which together with the Fourier inversion theorem yields Plancherel's theorem. The stated version is more convenient since it does only require integrability of f and g.

    Version where the multiplication is replaced by a general bilinear form M.

    theorem VectorFourier.fourierIntegral_continuousLinearMap_apply {๐•œ : Type u_1} {E : Type u_3} {F : Type u_4} {V : Type u_5} {W : Type u_6} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup V] [NormedSpace ๐•œ V] [MeasurableSpace V] [BorelSpace V] [NormedAddCommGroup W] [NormedSpace ๐•œ W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’L[๐•œ] W โ†’L[๐•œ] ๐•œ} [NormedAddCommGroup F] [NormedSpace โ„ F] [NormedAddCommGroup E] [NormedSpace โ„‚ E] {f : V โ†’ F โ†’L[โ„] E} {a : F} {w : W} (he : Continuous โ‡‘e) (hf : MeasureTheory.Integrable f ฮผ) :
    (fourierIntegral e ฮผ L.toLinearMapโ‚โ‚‚ f w) a = fourierIntegral e ฮผ L.toLinearMapโ‚โ‚‚ (fun (x : V) => (f x) a) w
    theorem VectorFourier.fourierIntegral_continuousMultilinearMap_apply {๐•œ : Type u_1} {ฮน : Type u_2} {E : Type u_3} {V : Type u_5} {W : Type u_6} [Fintype ฮน] [NontriviallyNormedField ๐•œ] [NormedAddCommGroup V] [NormedSpace ๐•œ V] [MeasurableSpace V] [BorelSpace V] [NormedAddCommGroup W] [NormedSpace ๐•œ W] {e : AddChar ๐•œ Circle} {ฮผ : MeasureTheory.Measure V} {L : V โ†’L[๐•œ] W โ†’L[๐•œ] ๐•œ} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {M : ฮน โ†’ Type u_7} [(i : ฮน) โ†’ NormedAddCommGroup (M i)] [(i : ฮน) โ†’ NormedSpace โ„ (M i)] {f : V โ†’ ContinuousMultilinearMap โ„ M E} {m : (i : ฮน) โ†’ M i} {w : W} (he : Continuous โ‡‘e) (hf : MeasureTheory.Integrable f ฮผ) :
    (fourierIntegral e ฮผ L.toLinearMapโ‚โ‚‚ f w) m = fourierIntegral e ฮผ L.toLinearMapโ‚โ‚‚ (fun (x : V) => (f x) m) w

    Fourier theory for functions on ๐•œ #

    def Fourier.fourierIntegral {๐•œ : Type u_1} [CommRing ๐•œ] [MeasurableSpace ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure ๐•œ) (f : ๐•œ โ†’ E) (w : ๐•œ) :
    E

    The Fourier transform integral for f : ๐•œ โ†’ E, with respect to the measure ฮผ and additive character e.

    Equations
    Instances For
      theorem Fourier.fourierIntegral_def {๐•œ : Type u_1} [CommRing ๐•œ] [MeasurableSpace ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure ๐•œ) (f : ๐•œ โ†’ E) (w : ๐•œ) :
      fourierIntegral e ฮผ f w = โˆซ (v : ๐•œ), e (-(v * w)) โ€ข f v โˆ‚ฮผ
      theorem Fourier.fourierIntegral_const_smul {๐•œ : Type u_1} [CommRing ๐•œ] [MeasurableSpace ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure ๐•œ) (f : ๐•œ โ†’ E) (r : โ„‚) :
      fourierIntegral e ฮผ (r โ€ข f) = r โ€ข fourierIntegral e ฮผ f
      theorem Fourier.norm_fourierIntegral_le_integral_norm {๐•œ : Type u_1} [CommRing ๐•œ] [MeasurableSpace ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure ๐•œ) (f : ๐•œ โ†’ E) (w : ๐•œ) :

      The uniform norm of the Fourier transform of f is bounded by the Lยน norm of f.

      theorem Fourier.fourierIntegral_comp_add_right {๐•œ : Type u_1} [CommRing ๐•œ] [MeasurableSpace ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„‚ E] [MeasurableAdd ๐•œ] (e : AddChar ๐•œ Circle) (ฮผ : MeasureTheory.Measure ๐•œ) [ฮผ.IsAddRightInvariant] (f : ๐•œ โ†’ E) (vโ‚€ : ๐•œ) :
      fourierIntegral e ฮผ (f โˆ˜ fun (v : ๐•œ) => v + vโ‚€) = fun (w : ๐•œ) => e (vโ‚€ * w) โ€ข fourierIntegral e ฮผ f w

      The Fourier transform converts right-translation into scalar multiplication by a phase factor.

      @[simp]

      The Fourier integral is well defined iff the function is integrable. Version with a general continuous bilinear function L. For the specialization to the inner product in an inner product space, see Real.fourierIntegral_convergent_iff.

      theorem Real.fourierIntegral_continuousMultilinearMap_apply' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {ฮน : Type u_2} {V : Type u_4} {W : Type u_5} [Fintype ฮน] [NormedAddCommGroup V] [NormedSpace โ„ V] [MeasurableSpace V] [BorelSpace V] [NormedAddCommGroup W] [NormedSpace โ„ W] {ฮผ : MeasureTheory.Measure V} {L : V โ†’L[โ„] W โ†’L[โ„] โ„} {M : ฮน โ†’ Type u_6} [(i : ฮน) โ†’ NormedAddCommGroup (M i)] [(i : ฮน) โ†’ NormedSpace โ„ (M i)] {f : V โ†’ ContinuousMultilinearMap โ„ M E} {m : (i : ฮน) โ†’ M i} {w : W} (hf : MeasureTheory.Integrable f ฮผ) :
      @[deprecated FourierTransform.fourier (since := "2025-11-12")]
      def Real.fourierIntegral {E : Type u} {F : outParam (Type v)} [self : FourierTransform E F] :
      E โ†’ F

      Alias of FourierTransform.fourier.

      Equations
      Instances For
        @[deprecated FourierTransformInv.fourierInv (since := "2025-11-12")]
        def Real.fourierIntegralInv {E : Type u} {F : outParam (Type v)} [self : FourierTransformInv E F] :
        E โ†’ F

        Alias of FourierTransformInv.fourierInv.

        Equations
        Instances For
          @[deprecated Real.fourier_eq (since := "2025-11-16")]

          Alias of Real.fourier_eq.

          @[deprecated Real.fourier_eq' (since := "2025-11-16")]

          Alias of Real.fourier_eq'.

          @[deprecated Real.fourierInv_eq (since := "2025-11-16")]

          Alias of Real.fourierInv_eq.

          @[deprecated Real.fourierInv_eq' (since := "2025-11-16")]

          Alias of Real.fourierInv_eq'.

          @[deprecated Real.fourierInv_eq_fourier_neg (since := "2025-11-16")]

          Alias of Real.fourierInv_eq_fourier_neg.

          @[deprecated Real.fourierInv_eq_fourier_comp_neg (since := "2025-11-16")]

          Alias of Real.fourierInv_eq_fourier_comp_neg.

          @[deprecated Real.fourier_real_eq (since := "2025-11-16")]

          Alias of Real.fourier_real_eq.

          @[deprecated Real.fourier_real_eq_integral_exp_smul (since := "2025-11-16")]

          Alias of Real.fourier_real_eq_integral_exp_smul.

          @[deprecated Real.fourier_continuousLinearMap_apply (since := "2025-11-16")]

          Alias of Real.fourier_continuousLinearMap_apply.

          theorem Real.fourier_continuousMultilinearMap_apply {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {V : Type u_2} [NormedAddCommGroup V] [InnerProductSpace โ„ V] [MeasurableSpace V] [BorelSpace V] [FiniteDimensional โ„ V] {ฮน : Type u_4} [Fintype ฮน] {M : ฮน โ†’ Type u_5} [(i : ฮน) โ†’ NormedAddCommGroup (M i)] [(i : ฮน) โ†’ NormedSpace โ„ (M i)] {f : V โ†’ ContinuousMultilinearMap โ„ M E} {m : (i : ฮน) โ†’ M i} {v : V} (hf : MeasureTheory.Integrable f MeasureTheory.volume) :
          (FourierTransform.fourier f v) m = FourierTransform.fourier (fun (x : V) => (f x) m) v
          @[deprecated Real.fourier_continuousMultilinearMap_apply (since := "2025-11-16")]
          theorem Real.fourierIntegral_continuousMultilinearMap_apply {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {V : Type u_2} [NormedAddCommGroup V] [InnerProductSpace โ„ V] [MeasurableSpace V] [BorelSpace V] [FiniteDimensional โ„ V] {ฮน : Type u_4} [Fintype ฮน] {M : ฮน โ†’ Type u_5} [(i : ฮน) โ†’ NormedAddCommGroup (M i)] [(i : ฮน) โ†’ NormedSpace โ„ (M i)] {f : V โ†’ ContinuousMultilinearMap โ„ M E} {m : (i : ฮน) โ†’ M i} {v : V} (hf : MeasureTheory.Integrable f MeasureTheory.volume) :
          (FourierTransform.fourier f v) m = FourierTransform.fourier (fun (x : V) => (f x) m) v

          Alias of Real.fourier_continuousMultilinearMap_apply.