Documentation

Mathlib.Algebra.Algebra.Bilinear

Facts about algebras involving bilinear maps and tensor products #

We move a few basic statements about algebras out of Algebra.Algebra.Basic, in order to avoid importing LinearAlgebra.BilinearMap and LinearAlgebra.TensorProduct unnecessarily.

def LinearMap.mul (R : Type u_1) (A : Type u_2) [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] :

The multiplication in a non-unital non-associative algebra is a bilinear map.

A weaker version of this for semirings exists as AddMonoidHom.mul.

Equations
Instances For
    noncomputable def LinearMap.mul' (R : Type u_1) (A : Type u_2) [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] :

    The multiplication map on a non-unital algebra, as an R-linear map from A ⊗[R] A to A.

    Equations
    Instances For
      def LinearMap.mulLeft (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) :

      The multiplication on the left in a non-unital algebra is a linear map.

      Equations
      Instances For
        def LinearMap.mulRight (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) :

        The multiplication on the right in an algebra is a linear map.

        Equations
        Instances For
          def LinearMap.mulLeftRight (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (ab : A × A) :

          Simultaneous multiplication on the left and right is a linear map.

          Equations
          Instances For
            @[simp]
            theorem LinearMap.mul_apply' {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) (b : A) :
            ((LinearMap.mul R A) a) b = a * b
            @[simp]
            theorem LinearMap.mulLeft_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) (b : A) :
            (LinearMap.mulLeft R a) b = a * b
            @[simp]
            theorem LinearMap.mulRight_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) (b : A) :
            (LinearMap.mulRight R a) b = b * a
            @[simp]
            theorem LinearMap.mulLeftRight_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) (b : A) (x : A) :
            (LinearMap.mulLeftRight R (a, b)) x = a * x * b
            @[simp]
            theorem LinearMap.mul'_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] {a : A} {b : A} :
            (LinearMap.mul' R A) (a ⊗ₜ[R] b) = a * b

            The multiplication in a non-unital algebra is a bilinear map.

            A weaker version of this for non-unital non-associative algebras exists as LinearMap.mul.

            Equations
            Instances For
              @[simp]
              @[simp]
              theorem LinearMap.mulLeft_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) (b : A) :
              @[simp]
              theorem LinearMap.mulRight_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) (b : A) :
              theorem LinearMap.map_mul_iff {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) :
              (∀ (x y : A), f (x * y) = f x * f y) (LinearMap.mul R A).compr₂ f = (LinearMap.mul R B ∘ₗ f).compl₂ f

              A LinearMap preserves multiplication if pre- and post- composition with LinearMap.mul are equivalent. By converting the statement into an equality of LinearMaps, this lemma allows various specialized ext lemmas about →ₗ[R] to then be applied.

              This is the LinearMap version of AddMonoidHom.map_mul_iff.

              def Algebra.lmul (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] :

              The multiplication in an algebra is an algebra homomorphism into the endomorphisms on the algebra.

              A weaker version of this for non-unital algebras exists as NonUnitalAlgHom.mul.

              Equations
              • Algebra.lmul R A = { toFun := (LinearMap.mul R A).toFun, map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
              Instances For
                @[simp]
                theorem Algebra.coe_lmul_eq_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] :
                (Algebra.lmul R A) = (LinearMap.mul R A)
                theorem Algebra.lmul_isUnit_iff {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {x : A} :
                @[simp]
                theorem LinearMap.mulLeft_eq_zero_iff {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (a : A) :
                @[simp]
                theorem LinearMap.mulRight_eq_zero_iff {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (a : A) :
                @[simp]
                theorem LinearMap.mulLeft_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] :
                LinearMap.mulLeft R 1 = LinearMap.id
                @[simp]
                theorem LinearMap.mulRight_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] :
                LinearMap.mulRight R 1 = LinearMap.id
                @[simp]
                theorem LinearMap.pow_mulLeft {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (n : ) :
                @[simp]
                theorem LinearMap.pow_mulRight {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (a : A) (n : ) :
                theorem LinearMap.mulLeft_injective {R : Type u_1} {A : Type u_2} [CommSemiring R] [Ring A] [Algebra R A] [NoZeroDivisors A] {x : A} (hx : x 0) :
                theorem LinearMap.mulRight_injective {R : Type u_1} {A : Type u_2} [CommSemiring R] [Ring A] [Algebra R A] [NoZeroDivisors A] {x : A} (hx : x 0) :
                theorem LinearMap.mul_injective {R : Type u_1} {A : Type u_2} [CommSemiring R] [Ring A] [Algebra R A] [NoZeroDivisors A] {x : A} (hx : x 0) :