Documentation

Mathlib.Algebra.Algebra.Hom

Homomorphisms of R-algebras #

This file defines bundled homomorphisms of R-algebras.

Main definitions #

Notations #

structure AlgHom (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] extends RingHom :
Type (max v w)

Defining the homomorphism in the category R-Alg.

  • toFun : AB
  • map_one' : self.toFun 1 = 1
  • map_mul' : ∀ (x y : A), self.toFun (x * y) = self.toFun x * self.toFun y
  • map_zero' : self.toFun 0 = 0
  • map_add' : ∀ (x y : A), self.toFun (x + y) = self.toFun x + self.toFun y
  • commutes' : ∀ (r : R), self.toFun ((algebraMap R A) r) = (algebraMap R B) r
Instances For

    Defining the homomorphism in the category R-Alg.

    Equations
    Instances For

      Defining the homomorphism in the category R-Alg.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        class AlgHomClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [FunLike F A B] extends RingHomClass :

        AlgHomClass F R A B asserts F is a type of bundled algebra homomorphisms from A to B.

        • map_mul : ∀ (f : F) (x y : A), f (x * y) = f x * f y
        • map_one : ∀ (f : F), f 1 = 1
        • map_add : ∀ (f : F) (x y : A), f (x + y) = f x + f y
        • map_zero : ∀ (f : F), f 0 = 0
        • commutes : ∀ (f : F) (r : R), f ((algebraMap R A) r) = (algebraMap R B) r
        Instances
          instance AlgHomClass.linearMapClass {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [FunLike F A B] [AlgHomClass F R A B] :
          Equations
          • =
          def AlgHomClass.toAlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_5} [FunLike F A B] [AlgHomClass F R A B] (f : F) :

          Turn an element of a type F satisfying AlgHomClass F α β into an actual AlgHom. This is declared as the default coercion from F to α →+* β.

          Equations
          • f = let __spread.0 := f; { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := }, map_mul' := }, map_zero' := , map_add' := }, commutes' := }
          Instances For
            instance AlgHomClass.coeTC {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_5} [FunLike F A B] [AlgHomClass F R A B] :
            CoeTC F (A →ₐ[R] B)
            Equations
            • AlgHomClass.coeTC = { coe := AlgHomClass.toAlgHom }
            instance AlgHom.funLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
            FunLike (A →ₐ[R] B) A B
            Equations
            • AlgHom.funLike = { coe := fun (f : A →ₐ[R] B) => f.toFun, coe_injective' := }
            instance AlgHom.algHomClass {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
            AlgHomClass (A →ₐ[R] B) R A B
            Equations
            • =
            def AlgHom.Simps.apply {R : Type u} {α : Type v} {β : Type w} [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α →ₐ[R] β) :
            αβ

            See Note [custom simps projection]

            Equations
            Instances For
              @[simp]
              theorem AlgHom.coe_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_1} [FunLike F A B] [AlgHomClass F R A B] (f : F) :
              f = f
              @[simp]
              theorem AlgHom.toFun_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
              f.toFun = f
              def AlgHom.toMonoidHom' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
              A →* B
              Equations
              • f = f
              Instances For
                instance AlgHom.coeOutMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                CoeOut (A →ₐ[R] B) (A →* B)
                Equations
                • AlgHom.coeOutMonoidHom = { coe := AlgHom.toMonoidHom' }
                def AlgHom.toAddMonoidHom' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
                A →+ B
                Equations
                • f = f
                Instances For
                  instance AlgHom.coeOutAddMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                  CoeOut (A →ₐ[R] B) (A →+ B)
                  Equations
                  • AlgHom.coeOutAddMonoidHom = { coe := AlgHom.toAddMonoidHom' }
                  @[simp]
                  theorem AlgHom.coe_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : A →+* B} (h : ∀ (r : R), f.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
                  { toRingHom := f, commutes' := h } = f
                  theorem AlgHom.coe_mks {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : AB} (h₁ : f 1 = 1) (h₂ : ∀ (x y : A), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun 0 = 0) (h₄ : ∀ (x y : A), { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun (x + y) = { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun x + { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun y) (h₅ : ∀ (r : R), { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
                  { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ } = f
                  @[simp]
                  theorem AlgHom.coe_ringHom_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : A →+* B} (h : ∀ (r : R), f.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
                  { toRingHom := f, commutes' := h } = f
                  @[simp]
                  theorem AlgHom.toRingHom_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
                  f.toRingHom = f
                  @[simp]
                  theorem AlgHom.coe_toRingHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
                  f = f
                  @[simp]
                  theorem AlgHom.coe_toMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
                  f = f
                  @[simp]
                  theorem AlgHom.coe_toAddMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
                  f = f
                  theorem AlgHom.coe_fn_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                  Function.Injective DFunLike.coe
                  theorem AlgHom.coe_fn_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} :
                  φ₁ = φ₂ φ₁ = φ₂
                  theorem AlgHom.coe_ringHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                  Function.Injective RingHomClass.toRingHom
                  theorem AlgHom.coe_monoidHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                  Function.Injective MonoidHomClass.toMonoidHom
                  theorem AlgHom.coe_addMonoidHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                  Function.Injective AddMonoidHomClass.toAddMonoidHom
                  theorem AlgHom.congr_fun {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} (H : φ₁ = φ₂) (x : A) :
                  φ₁ x = φ₂ x
                  theorem AlgHom.congr_arg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {x : A} {y : A} (h : x = y) :
                  φ x = φ y
                  theorem AlgHom.ext {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} (H : ∀ (x : A), φ₁ x = φ₂ x) :
                  φ₁ = φ₂
                  theorem AlgHom.ext_iff {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} :
                  φ₁ = φ₂ ∀ (x : A), φ₁ x = φ₂ x
                  @[simp]
                  theorem AlgHom.mk_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : A →ₐ[R] B} (h₁ : f 1 = 1) (h₂ : ∀ (x y : A), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun 0 = 0) (h₄ : ∀ (x y : A), { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun (x + y) = { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun x + { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun y) (h₅ : ∀ (r : R), { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
                  { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ } = f
                  @[simp]
                  theorem AlgHom.commutes {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (r : R) :
                  φ ((algebraMap R A) r) = (algebraMap R B) r
                  theorem AlgHom.comp_algebraMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
                  theorem AlgHom.map_add {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (r : A) (s : A) :
                  φ (r + s) = φ r + φ s
                  theorem AlgHom.map_zero {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
                  φ 0 = 0
                  theorem AlgHom.map_mul {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) (y : A) :
                  φ (x * y) = φ x * φ y
                  theorem AlgHom.map_one {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
                  φ 1 = 1
                  theorem AlgHom.map_pow {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) (n : ) :
                  φ (x ^ n) = φ x ^ n
                  theorem AlgHom.map_smul {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (r : R) (x : A) :
                  φ (r x) = r φ x
                  theorem AlgHom.map_sum {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {ι : Type u_1} (f : ιA) (s : Finset ι) :
                  φ (Finset.sum s fun (x : ι) => f x) = Finset.sum s fun (x : ι) => φ (f x)
                  theorem AlgHom.map_finsupp_sum {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {α : Type u_1} [Zero α] {ι : Type u_2} (f : ι →₀ α) (g : ιαA) :
                  φ (Finsupp.sum f g) = Finsupp.sum f fun (i : ι) (a : α) => φ (g i a)
                  theorem AlgHom.map_bit0 {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
                  φ (bit0 x) = bit0 (φ x)
                  theorem AlgHom.map_bit1 {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
                  φ (bit1 x) = bit1 (φ x)
                  def AlgHom.mk' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →+* B) (h : ∀ (c : R) (x : A), f (c x) = c f x) :

                  If a RingHom is R-linear, then it is an AlgHom.

                  Equations
                  • AlgHom.mk' f h = { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := }, map_mul' := }, map_zero' := , map_add' := }, commutes' := }
                  Instances For
                    @[simp]
                    theorem AlgHom.coe_mk' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →+* B) (h : ∀ (c : R) (x : A), f (c x) = c f x) :
                    (AlgHom.mk' f h) = f
                    def AlgHom.id (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

                    Identity map as an AlgHom.

                    Equations
                    Instances For
                      @[simp]
                      theorem AlgHom.coe_id (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :
                      (AlgHom.id R A) = id
                      @[simp]
                      theorem AlgHom.id_toRingHom (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :
                      theorem AlgHom.id_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (p : A) :
                      (AlgHom.id R A) p = p
                      def AlgHom.comp {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :

                      Composition of algebra homeomorphisms.

                      Equations
                      Instances For
                        @[simp]
                        theorem AlgHom.coe_comp {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
                        (AlgHom.comp φ₁ φ₂) = φ₁ φ₂
                        theorem AlgHom.comp_apply {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) :
                        (AlgHom.comp φ₁ φ₂) p = φ₁ (φ₂ p)
                        theorem AlgHom.comp_toRingHom {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
                        (AlgHom.comp φ₁ φ₂) = RingHom.comp φ₁ φ₂
                        @[simp]
                        theorem AlgHom.comp_id {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
                        AlgHom.comp φ (AlgHom.id R A) = φ
                        @[simp]
                        theorem AlgHom.id_comp {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
                        AlgHom.comp (AlgHom.id R B) φ = φ
                        theorem AlgHom.comp_assoc {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} {D : Type v₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) :
                        AlgHom.comp (AlgHom.comp φ₁ φ₂) φ₃ = AlgHom.comp φ₁ (AlgHom.comp φ₂ φ₃)
                        def AlgHom.toLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :

                        R-Alg ⥤ R-Mod

                        Equations
                        Instances For
                          @[simp]
                          theorem AlgHom.toLinearMap_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (p : A) :
                          (AlgHom.toLinearMap φ) p = φ p
                          theorem AlgHom.toLinearMap_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
                          Function.Injective AlgHom.toLinearMap
                          @[simp]
                          theorem AlgHom.comp_toLinearMap {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
                          @[simp]
                          theorem AlgHom.toLinearMap_id {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
                          AlgHom.toLinearMap (AlgHom.id R A) = LinearMap.id
                          @[simp]
                          theorem AlgHom.ofLinearMap_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ (x y : A), f (x * y) = f x * f y) (a : A) :
                          (AlgHom.ofLinearMap f map_one map_mul) a = f a
                          def AlgHom.ofLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ (x y : A), f (x * y) = f x * f y) :

                          Promote a LinearMap to an AlgHom by supplying proofs about the behavior on 1 and *.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem AlgHom.ofLinearMap_toLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (map_one : (AlgHom.toLinearMap φ) 1 = 1) (map_mul : ∀ (x y : A), (AlgHom.toLinearMap φ) (x * y) = (AlgHom.toLinearMap φ) x * (AlgHom.toLinearMap φ) y) :
                            AlgHom.ofLinearMap (AlgHom.toLinearMap φ) map_one map_mul = φ
                            @[simp]
                            theorem AlgHom.toLinearMap_ofLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ (x y : A), f (x * y) = f x * f y) :
                            @[simp]
                            theorem AlgHom.ofLinearMap_id {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (map_one : LinearMap.id 1 = 1) (map_mul : ∀ (x y : A), LinearMap.id (x * y) = LinearMap.id x * LinearMap.id y) :
                            AlgHom.ofLinearMap LinearMap.id map_one map_mul = AlgHom.id R A
                            theorem AlgHom.map_smul_of_tower {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {R' : Type u_1} [SMul R' A] [SMul R' B] [LinearMap.CompatibleSMul A B R' R] (r : R') (x : A) :
                            φ (r x) = r φ x
                            theorem AlgHom.map_list_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (s : List A) :
                            φ (List.prod s) = List.prod (List.map (φ) s)
                            theorem AlgHom.End_toSemigroup_toMul_mul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (φ₁ : A →ₐ[R] A) (φ₂ : A →ₐ[R] A) :
                            φ₁ * φ₂ = AlgHom.comp φ₁ φ₂
                            theorem AlgHom.End_toOne_one {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
                            1 = AlgHom.id R A
                            instance AlgHom.End {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
                            Equations
                            @[simp]
                            theorem AlgHom.one_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) :
                            1 x = x
                            @[simp]
                            theorem AlgHom.mul_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (φ : A →ₐ[R] A) (ψ : A →ₐ[R] A) (x : A) :
                            (φ * ψ) x = φ (ψ x)
                            theorem AlgHom.algebraMap_eq_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) {y : R} {x : A} (h : (algebraMap R A) y = x) :
                            (algebraMap R B) y = f x
                            theorem AlgHom.map_multiset_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (s : Multiset A) :
                            theorem AlgHom.map_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {ι : Type u_1} (f : ιA) (s : Finset ι) :
                            φ (Finset.prod s fun (x : ι) => f x) = Finset.prod s fun (x : ι) => φ (f x)
                            theorem AlgHom.map_finsupp_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {α : Type u_1} [Zero α] {ι : Type u_2} (f : ι →₀ α) (g : ιαA) :
                            φ (Finsupp.prod f g) = Finsupp.prod f fun (i : ι) (a : α) => φ (g i a)
                            theorem AlgHom.map_neg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
                            φ (-x) = -φ x
                            theorem AlgHom.map_sub {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) (y : A) :
                            φ (x - y) = φ x - φ y
                            def RingHom.toNatAlgHom {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R →+* S) :

                            Reinterpret a RingHom as an -algebra homomorphism.

                            Equations
                            • RingHom.toNatAlgHom f = { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := }, map_mul' := }, map_zero' := , map_add' := }, commutes' := }
                            Instances For
                              def RingHom.toIntAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :

                              Reinterpret a RingHom as a -algebra homomorphism.

                              Equations
                              Instances For
                                theorem RingHom.toIntAlgHom_injective {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] :
                                Function.Injective RingHom.toIntAlgHom
                                def RingHom.toRatAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :

                                Reinterpret a RingHom as a -algebra homomorphism. This actually yields an equivalence, see RingHom.equivRatAlgHom.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem RingHom.toRatAlgHom_toRingHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :
                                  @[simp]
                                  theorem AlgHom.toRingHom_toRatAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →ₐ[] S) :
                                  @[simp]
                                  theorem RingHom.equivRatAlgHom_symm_apply {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (self : R →ₐ[] S) :
                                  RingHom.equivRatAlgHom.symm self = self.toRingHom
                                  @[simp]
                                  theorem RingHom.equivRatAlgHom_apply {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :
                                  RingHom.equivRatAlgHom f = RingHom.toRatAlgHom f
                                  def RingHom.equivRatAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] :
                                  (R →+* S) (R →ₐ[] S)

                                  The equivalence between RingHom and -algebra homomorphisms.

                                  Equations
                                  • RingHom.equivRatAlgHom = { toFun := RingHom.toRatAlgHom, invFun := AlgHom.toRingHom, left_inv := , right_inv := }
                                  Instances For
                                    def Algebra.ofId (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

                                    AlgebraMap as an AlgHom.

                                    Equations
                                    Instances For
                                      theorem Algebra.ofId_apply {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] (r : R) :
                                      (Algebra.ofId R A) r = (algebraMap R A) r
                                      instance Algebra.subsingleton_id {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

                                      This is a special case of a more general instance that we define in a later file.

                                      Equations
                                      • =
                                      theorem Algebra.ext_id {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] (f : R →ₐ[R] A) (g : R →ₐ[R] A) :
                                      f = g

                                      This ext lemma closes trivial subgoals create when chaining heterobasic ext lemmas.

                                      @[simp]
                                      theorem Algebra.smul_units_def {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] (f : A →ₐ[R] A) (x : Aˣ) :
                                      f x = (Units.map f) x
                                      @[simp]
                                      theorem MulSemiringAction.toAlgHom_apply {M : Type u_1} (R : Type u_3) (A : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [Monoid M] [MulSemiringAction M A] [SMulCommClass M R A] (m : M) (a : A) :
                                      def MulSemiringAction.toAlgHom {M : Type u_1} (R : Type u_3) (A : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [Monoid M] [MulSemiringAction M A] [SMulCommClass M R A] (m : M) :

                                      Each element of the monoid defines an algebra homomorphism.

                                      This is a stronger version of MulSemiringAction.toRingHom and DistribMulAction.toLinearMap.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For