Documentation

Mathlib.Algebra.Group.Submonoid.Operations

Operations on Submonoids #

In this file we define various operations on Submonoids and MonoidHoms.

Main definitions #

Conversion between multiplicative and additive definitions #

(Commutative) monoid structure on a submonoid #

Group actions by submonoids #

Operations on submonoids #

Monoid homomorphisms between submonoid #

Operations on MonoidHoms #

Tags #

submonoid, range, product, map, comap

Conversion to/from Additive/Multiplicative #

Submonoids of monoid M are isomorphic to additive submonoids of Additive M.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Submonoid.coe_toAddSubmonoid_symm_apply {M : Type u_1} [MulOneClass M] (S : AddSubmonoid (Additive M)) :
    ((RelIso.symm Submonoid.toAddSubmonoid) S) = Additive.ofMul ⁻¹' S
    @[simp]
    theorem Submonoid.coe_toAddSubmonoid_apply {M : Type u_1} [MulOneClass M] (S : Submonoid M) :
    (Submonoid.toAddSubmonoid S) = Additive.toMul ⁻¹' S
    @[reducible, inline]

    Additive submonoids of an additive monoid Additive M are isomorphic to submonoids of M.

    Equations
    • AddSubmonoid.toSubmonoid' = Submonoid.toAddSubmonoid.symm
    Instances For
      theorem Submonoid.toAddSubmonoid_closure {M : Type u_1} [MulOneClass M] (S : Set M) :
      Submonoid.toAddSubmonoid (Submonoid.closure S) = AddSubmonoid.closure (Additive.toMul ⁻¹' S)
      theorem AddSubmonoid.toSubmonoid'_closure {M : Type u_1} [MulOneClass M] (S : Set (Additive M)) :
      AddSubmonoid.toSubmonoid' (AddSubmonoid.closure S) = Submonoid.closure (Multiplicative.ofAdd ⁻¹' S)

      Additive submonoids of an additive monoid A are isomorphic to multiplicative submonoids of Multiplicative A.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AddSubmonoid.coe_toSubmonoid_apply {A : Type u_4} [AddZeroClass A] (S : AddSubmonoid A) :
        (AddSubmonoid.toSubmonoid S) = Multiplicative.toAdd ⁻¹' S
        @[simp]
        theorem AddSubmonoid.coe_toSubmonoid_symm_apply {A : Type u_4} [AddZeroClass A] (S : Submonoid (Multiplicative A)) :
        ((RelIso.symm AddSubmonoid.toSubmonoid) S) = Multiplicative.ofAdd ⁻¹' S
        @[reducible, inline]

        Submonoids of a monoid Multiplicative A are isomorphic to additive submonoids of A.

        Equations
        • Submonoid.toAddSubmonoid' = AddSubmonoid.toSubmonoid.symm
        Instances For
          theorem AddSubmonoid.toSubmonoid_closure {A : Type u_4} [AddZeroClass A] (S : Set A) :
          AddSubmonoid.toSubmonoid (AddSubmonoid.closure S) = Submonoid.closure (Multiplicative.toAdd ⁻¹' S)
          theorem Submonoid.toAddSubmonoid'_closure {A : Type u_4} [AddZeroClass A] (S : Set (Multiplicative A)) :
          Submonoid.toAddSubmonoid' (Submonoid.closure S) = AddSubmonoid.closure (Additive.ofMul ⁻¹' S)

          comap and map #

          def Submonoid.comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid N) :

          The preimage of a submonoid along a monoid homomorphism is a submonoid.

          Equations
          Instances For
            def AddSubmonoid.comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid N) :

            The preimage of an AddSubmonoid along an AddMonoid homomorphism is an AddSubmonoid.

            Equations
            Instances For
              @[simp]
              theorem Submonoid.coe_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S : Submonoid N) (f : F) :
              (Submonoid.comap f S) = f ⁻¹' S
              @[simp]
              theorem AddSubmonoid.coe_comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (S : AddSubmonoid N) (f : F) :
              (AddSubmonoid.comap f S) = f ⁻¹' S
              @[simp]
              theorem Submonoid.mem_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} {x : M} :
              @[simp]
              theorem AddSubmonoid.mem_comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {S : AddSubmonoid N} {f : F} {x : M} :
              theorem Submonoid.comap_comap {M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (S : Submonoid P) (g : N →* P) (f : M →* N) :
              theorem AddSubmonoid.comap_comap {M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (S : AddSubmonoid P) (g : N →+ P) (f : M →+ N) :
              @[simp]
              def Submonoid.map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) :

              The image of a submonoid along a monoid homomorphism is a submonoid.

              Equations
              • Submonoid.map f S = { carrier := f '' S, mul_mem' := , one_mem' := }
              Instances For
                def AddSubmonoid.map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) :

                The image of an AddSubmonoid along an AddMonoid homomorphism is an AddSubmonoid.

                Equations
                Instances For
                  @[simp]
                  theorem Submonoid.coe_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) :
                  (Submonoid.map f S) = f '' S
                  @[simp]
                  theorem AddSubmonoid.coe_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) :
                  (AddSubmonoid.map f S) = f '' S
                  @[simp]
                  theorem Submonoid.mem_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid M} {y : N} :
                  y Submonoid.map f S xS, f x = y
                  @[simp]
                  theorem AddSubmonoid.mem_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {S : AddSubmonoid M} {y : N} :
                  y AddSubmonoid.map f S xS, f x = y
                  theorem Submonoid.mem_map_of_mem {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) {S : Submonoid M} {x : M} (hx : x S) :
                  theorem AddSubmonoid.mem_map_of_mem {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) {S : AddSubmonoid M} {x : M} (hx : x S) :
                  theorem Submonoid.apply_coe_mem_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) (x : S) :
                  f x Submonoid.map f S
                  theorem AddSubmonoid.apply_coe_mem_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) (x : S) :
                  theorem Submonoid.map_map {M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (S : Submonoid M) (g : N →* P) (f : M →* N) :
                  theorem AddSubmonoid.map_map {M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (S : AddSubmonoid M) (g : N →+ P) (f : M →+ N) :
                  @[simp]
                  theorem Submonoid.mem_map_iff_mem {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) {S : Submonoid M} {x : M} :
                  f x Submonoid.map f S x S
                  @[simp]
                  theorem AddSubmonoid.mem_map_iff_mem {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) {S : AddSubmonoid M} {x : M} :
                  theorem Submonoid.map_le_iff_le_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid M} {T : Submonoid N} :
                  theorem AddSubmonoid.map_le_iff_le_comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {S : AddSubmonoid M} {T : AddSubmonoid N} :
                  theorem Submonoid.gc_map_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                  theorem AddSubmonoid.gc_map_comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                  theorem Submonoid.map_le_of_le_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {T : Submonoid N} {f : F} :
                  theorem AddSubmonoid.map_le_of_le_comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {T : AddSubmonoid N} {f : F} :
                  theorem Submonoid.le_comap_of_map_le {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {T : Submonoid N} {f : F} :
                  theorem AddSubmonoid.le_comap_of_map_le {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {T : AddSubmonoid N} {f : F} :
                  theorem Submonoid.le_comap_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} :
                  theorem AddSubmonoid.le_comap_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} :
                  theorem Submonoid.map_comap_le {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} :
                  theorem AddSubmonoid.map_comap_le {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {S : AddSubmonoid N} {f : F} :
                  theorem Submonoid.monotone_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} :
                  theorem AddSubmonoid.monotone_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} :
                  theorem Submonoid.monotone_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} :
                  theorem AddSubmonoid.monotone_comap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} :
                  @[simp]
                  theorem Submonoid.map_comap_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} :
                  @[simp]
                  theorem AddSubmonoid.map_comap_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} :
                  @[simp]
                  theorem Submonoid.comap_map_comap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} :
                  @[simp]
                  theorem Submonoid.map_sup {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid M) (f : F) :
                  theorem AddSubmonoid.map_sup {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (S T : AddSubmonoid M) (f : F) :
                  theorem Submonoid.map_iSup {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Sort u_5} (f : F) (s : ιSubmonoid M) :
                  Submonoid.map f (iSup s) = ⨆ (i : ι), Submonoid.map f (s i)
                  theorem AddSubmonoid.map_iSup {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Sort u_5} (f : F) (s : ιAddSubmonoid M) :
                  AddSubmonoid.map f (iSup s) = ⨆ (i : ι), AddSubmonoid.map f (s i)
                  theorem Submonoid.map_inf {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid M) (f : F) (hf : Function.Injective f) :
                  theorem AddSubmonoid.map_inf {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (S T : AddSubmonoid M) (f : F) (hf : Function.Injective f) :
                  theorem Submonoid.map_iInf {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Sort u_5} [Nonempty ι] (f : F) (hf : Function.Injective f) (s : ιSubmonoid M) :
                  Submonoid.map f (iInf s) = ⨅ (i : ι), Submonoid.map f (s i)
                  theorem AddSubmonoid.map_iInf {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Sort u_5} [Nonempty ι] (f : F) (hf : Function.Injective f) (s : ιAddSubmonoid M) :
                  AddSubmonoid.map f (iInf s) = ⨅ (i : ι), AddSubmonoid.map f (s i)
                  theorem Submonoid.comap_inf {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid N) (f : F) :
                  theorem AddSubmonoid.comap_inf {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (S T : AddSubmonoid N) (f : F) :
                  theorem Submonoid.comap_iInf {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Sort u_5} (f : F) (s : ιSubmonoid N) :
                  Submonoid.comap f (iInf s) = ⨅ (i : ι), Submonoid.comap f (s i)
                  theorem AddSubmonoid.comap_iInf {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Sort u_5} (f : F) (s : ιAddSubmonoid N) :
                  AddSubmonoid.comap f (iInf s) = ⨅ (i : ι), AddSubmonoid.comap f (s i)
                  @[simp]
                  theorem Submonoid.map_bot {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                  @[simp]
                  theorem AddSubmonoid.map_bot {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                  @[simp]
                  theorem Submonoid.comap_top {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                  @[simp]
                  theorem AddSubmonoid.comap_top {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                  @[simp]
                  theorem Submonoid.map_id {M : Type u_1} [MulOneClass M] (S : Submonoid M) :
                  def Submonoid.gciMapComap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) :

                  map f and comap f form a GaloisCoinsertion when f is injective.

                  Equations
                  Instances For
                    def AddSubmonoid.gciMapComap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) :

                    map f and comap f form a GaloisCoinsertion when f is injective.

                    Equations
                    Instances For
                      theorem Submonoid.comap_map_eq_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) (S : Submonoid M) :
                      theorem AddSubmonoid.comap_map_eq_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) (S : AddSubmonoid M) :
                      theorem Submonoid.comap_surjective_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) :
                      theorem Submonoid.map_injective_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) :
                      theorem Submonoid.comap_inf_map_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) (S T : Submonoid M) :
                      theorem AddSubmonoid.comap_inf_map_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) (S T : AddSubmonoid M) :
                      theorem Submonoid.comap_iInf_map_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Injective f) (S : ιSubmonoid M) :
                      Submonoid.comap f (⨅ (i : ι), Submonoid.map f (S i)) = iInf S
                      theorem AddSubmonoid.comap_iInf_map_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Injective f) (S : ιAddSubmonoid M) :
                      AddSubmonoid.comap f (⨅ (i : ι), AddSubmonoid.map f (S i)) = iInf S
                      theorem Submonoid.comap_sup_map_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) (S T : Submonoid M) :
                      theorem AddSubmonoid.comap_sup_map_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) (S T : AddSubmonoid M) :
                      theorem Submonoid.comap_iSup_map_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Injective f) (S : ιSubmonoid M) :
                      Submonoid.comap f (⨆ (i : ι), Submonoid.map f (S i)) = iSup S
                      theorem AddSubmonoid.comap_iSup_map_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Injective f) (S : ιAddSubmonoid M) :
                      AddSubmonoid.comap f (⨆ (i : ι), AddSubmonoid.map f (S i)) = iSup S
                      theorem Submonoid.map_le_map_iff_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) {S T : Submonoid M} :
                      theorem AddSubmonoid.map_le_map_iff_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) {S T : AddSubmonoid M} :
                      theorem Submonoid.map_strictMono_of_injective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective f) :
                      theorem AddSubmonoid.map_strictMono_of_injective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective f) :
                      def Submonoid.giMapComap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) :

                      map f and comap f form a GaloisInsertion when f is surjective.

                      Equations
                      Instances For
                        def AddSubmonoid.giMapComap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective f) :

                        map f and comap f form a GaloisInsertion when f is surjective.

                        Equations
                        Instances For
                          theorem Submonoid.map_comap_eq_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) (S : Submonoid N) :
                          theorem AddSubmonoid.map_comap_eq_of_surjective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective f) (S : AddSubmonoid N) :
                          theorem Submonoid.map_surjective_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) :
                          theorem Submonoid.comap_injective_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) :
                          theorem Submonoid.map_inf_comap_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) (S T : Submonoid N) :
                          theorem Submonoid.map_iInf_comap_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Surjective f) (S : ιSubmonoid N) :
                          Submonoid.map f (⨅ (i : ι), Submonoid.comap f (S i)) = iInf S
                          theorem AddSubmonoid.map_iInf_comap_of_surjective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Surjective f) (S : ιAddSubmonoid N) :
                          AddSubmonoid.map f (⨅ (i : ι), AddSubmonoid.comap f (S i)) = iInf S
                          theorem Submonoid.map_sup_comap_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) (S T : Submonoid N) :
                          theorem Submonoid.map_iSup_comap_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Surjective f) (S : ιSubmonoid N) :
                          Submonoid.map f (⨆ (i : ι), Submonoid.comap f (S i)) = iSup S
                          theorem AddSubmonoid.map_iSup_comap_of_surjective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Surjective f) (S : ιAddSubmonoid N) :
                          AddSubmonoid.map f (⨆ (i : ι), AddSubmonoid.comap f (S i)) = iSup S
                          theorem Submonoid.comap_le_comap_iff_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) {S T : Submonoid N} :
                          theorem Submonoid.comap_strictMono_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective f) :
                          def Submonoid.topEquiv {M : Type u_5} [MulOneClass M] :
                          ≃* M

                          The top submonoid is isomorphic to the monoid.

                          Equations
                          • Submonoid.topEquiv = { toFun := fun (x : ) => x, invFun := fun (x : M) => x, , left_inv := , right_inv := , map_mul' := }
                          Instances For

                            The top additive submonoid is isomorphic to the additive monoid.

                            Equations
                            • AddSubmonoid.topEquiv = { toFun := fun (x : ) => x, invFun := fun (x : M) => x, , left_inv := , right_inv := , map_add' := }
                            Instances For
                              @[simp]
                              theorem Submonoid.topEquiv_apply {M : Type u_5} [MulOneClass M] (x : ) :
                              Submonoid.topEquiv x = x
                              @[simp]
                              theorem AddSubmonoid.topEquiv_symm_apply_coe {M : Type u_5} [AddZeroClass M] (x : M) :
                              (AddSubmonoid.topEquiv.symm x) = x
                              @[simp]
                              theorem Submonoid.topEquiv_symm_apply_coe {M : Type u_5} [MulOneClass M] (x : M) :
                              (Submonoid.topEquiv.symm x) = x
                              @[simp]
                              theorem AddSubmonoid.topEquiv_apply {M : Type u_5} [AddZeroClass M] (x : ) :
                              AddSubmonoid.topEquiv x = x
                              @[simp]
                              theorem Submonoid.topEquiv_toMonoidHom {M : Type u_5} [MulOneClass M] :
                              Submonoid.topEquiv = .subtype
                              @[simp]
                              theorem AddSubmonoid.topEquiv_toAddMonoidHom {M : Type u_5} [AddZeroClass M] :
                              AddSubmonoid.topEquiv = .subtype
                              noncomputable def Submonoid.equivMapOfInjective {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M →* N) (hf : Function.Injective f) :
                              S ≃* (Submonoid.map f S)

                              A subgroup is isomorphic to its image under an injective function. If you have an isomorphism, use MulEquiv.submonoidMap for better definitional equalities.

                              Equations
                              • S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (⇑f) (↑S) hf, map_mul' := }
                              Instances For
                                noncomputable def AddSubmonoid.equivMapOfInjective {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (S : AddSubmonoid M) (f : M →+ N) (hf : Function.Injective f) :
                                S ≃+ (AddSubmonoid.map f S)

                                An additive subgroup is isomorphic to its image under an injective function. If you have an isomorphism, use AddEquiv.addSubmonoidMap for better definitional equalities.

                                Equations
                                • S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (⇑f) (↑S) hf, map_add' := }
                                Instances For
                                  @[simp]
                                  theorem Submonoid.coe_equivMapOfInjective_apply {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M →* N) (hf : Function.Injective f) (x : S) :
                                  ((S.equivMapOfInjective f hf) x) = f x
                                  @[simp]
                                  theorem AddSubmonoid.coe_equivMapOfInjective_apply {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (S : AddSubmonoid M) (f : M →+ N) (hf : Function.Injective f) (x : S) :
                                  ((S.equivMapOfInjective f hf) x) = f x
                                  @[simp]
                                  def Submonoid.prod {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) (t : Submonoid N) :

                                  Given submonoids s, t of monoids M, N respectively, s × t as a submonoid of M × N.

                                  Equations
                                  • s.prod t = { carrier := s ×ˢ t, mul_mem' := , one_mem' := }
                                  Instances For
                                    def AddSubmonoid.prod {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (s : AddSubmonoid M) (t : AddSubmonoid N) :

                                    Given AddSubmonoids s, t of AddMonoids A, B respectively, s × t as an AddSubmonoid of A × B.

                                    Equations
                                    • s.prod t = { carrier := s ×ˢ t, add_mem' := , zero_mem' := }
                                    Instances For
                                      theorem Submonoid.coe_prod {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) (t : Submonoid N) :
                                      (s.prod t) = s ×ˢ t
                                      theorem AddSubmonoid.coe_prod {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (s : AddSubmonoid M) (t : AddSubmonoid N) :
                                      (s.prod t) = s ×ˢ t
                                      theorem Submonoid.mem_prod {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {p : M × N} :
                                      p s.prod t p.1 s p.2 t
                                      theorem AddSubmonoid.mem_prod {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {s : AddSubmonoid M} {t : AddSubmonoid N} {p : M × N} :
                                      p s.prod t p.1 s p.2 t
                                      theorem Submonoid.prod_mono {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s₁ s₂ : Submonoid M} {t₁ t₂ : Submonoid N} (hs : s₁ s₂) (ht : t₁ t₂) :
                                      s₁.prod t₁ s₂.prod t₂
                                      theorem AddSubmonoid.prod_mono {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {s₁ s₂ : AddSubmonoid M} {t₁ t₂ : AddSubmonoid N} (hs : s₁ s₂) (ht : t₁ t₂) :
                                      s₁.prod t₁ s₂.prod t₂
                                      theorem Submonoid.prod_top {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) :
                                      theorem Submonoid.top_prod {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid N) :
                                      @[simp]
                                      theorem Submonoid.top_prod_top {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] :
                                      .prod =
                                      @[simp]
                                      theorem AddSubmonoid.top_prod_top {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] :
                                      .prod =
                                      theorem Submonoid.bot_prod_bot {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] :
                                      .prod =
                                      theorem AddSubmonoid.bot_prod_bot {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] :
                                      .prod =
                                      def Submonoid.prodEquiv {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) (t : Submonoid N) :
                                      (s.prod t) ≃* s × t

                                      The product of submonoids is isomorphic to their product as monoids.

                                      Equations
                                      Instances For
                                        def AddSubmonoid.prodEquiv {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (s : AddSubmonoid M) (t : AddSubmonoid N) :
                                        (s.prod t) ≃+ s × t

                                        The product of additive submonoids is isomorphic to their product as additive monoids

                                        Equations
                                        Instances For
                                          theorem Submonoid.map_inl {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) :
                                          theorem Submonoid.map_inr {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid N) :
                                          @[simp]
                                          theorem Submonoid.prod_bot_sup_bot_prod {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) (t : Submonoid N) :
                                          s.prod .prod t = s.prod t
                                          @[simp]
                                          theorem AddSubmonoid.prod_bot_sup_bot_prod {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (s : AddSubmonoid M) (t : AddSubmonoid N) :
                                          s.prod .prod t = s.prod t
                                          theorem Submonoid.mem_map_equiv {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {f : M ≃* N} {K : Submonoid M} {x : N} :
                                          x Submonoid.map f.toMonoidHom K f.symm x K
                                          theorem AddSubmonoid.mem_map_equiv {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {f : M ≃+ N} {K : AddSubmonoid M} {x : N} :
                                          x AddSubmonoid.map f.toAddMonoidHom K f.symm x K
                                          theorem Submonoid.map_equiv_eq_comap_symm {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : M ≃* N) (K : Submonoid M) :
                                          Submonoid.map f.toMonoidHom K = Submonoid.comap f.symm.toMonoidHom K
                                          theorem AddSubmonoid.map_equiv_eq_comap_symm {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (f : M ≃+ N) (K : AddSubmonoid M) :
                                          AddSubmonoid.map f.toAddMonoidHom K = AddSubmonoid.comap f.symm.toAddMonoidHom K
                                          theorem Submonoid.comap_equiv_eq_map_symm {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : N ≃* M) (K : Submonoid M) :
                                          @[simp]
                                          theorem Submonoid.map_equiv_top {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : M ≃* N) :
                                          @[simp]
                                          theorem AddSubmonoid.map_equiv_top {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (f : M ≃+ N) :
                                          theorem Submonoid.le_prod_iff {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {u : Submonoid (M × N)} :
                                          theorem Submonoid.prod_le_iff {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {u : Submonoid (M × N)} :
                                          theorem Submonoid.closure_prod {N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Set M} {t : Set N} (hs : 1 s) (ht : 1 t) :
                                          theorem AddSubmonoid.closure_prod {N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {s : Set M} {t : Set N} (hs : 0 s) (ht : 0 t) :
                                          def MonoidHom.mrange {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :

                                          The range of a monoid homomorphism is a submonoid. See Note [range copy pattern].

                                          Equations
                                          Instances For
                                            def AddMonoidHom.mrange {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :

                                            The range of an AddMonoidHom is an AddSubmonoid.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem MonoidHom.coe_mrange {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                                              @[simp]
                                              theorem AddMonoidHom.coe_mrange {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                                              @[simp]
                                              theorem MonoidHom.mem_mrange {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {y : N} :
                                              y MonoidHom.mrange f ∃ (x : M), f x = y
                                              @[simp]
                                              theorem AddMonoidHom.mem_mrange {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {y : N} :
                                              y AddMonoidHom.mrange f ∃ (x : M), f x = y
                                              theorem MonoidHom.mrange_comp {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {O : Type u_5} [Monoid O] (f : N →* O) (g : M →* N) :
                                              theorem AddMonoidHom.mrange_comp {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {O : Type u_5} [AddMonoid O] (f : N →+ O) (g : M →+ N) :
                                              theorem MonoidHom.mrange_eq_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                                              theorem AddMonoidHom.mrange_eq_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                                              theorem MonoidHom.map_mrange {M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (g : N →* P) (f : M →* N) :
                                              theorem AddMonoidHom.map_mrange {M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (g : N →+ P) (f : M →+ N) :
                                              theorem MonoidHom.mrange_eq_top {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} :
                                              theorem AddMonoidHom.mrange_eq_top {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} :
                                              @[deprecated MonoidHom.mrange_eq_top]
                                              theorem MonoidHom.mrange_top_iff_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} :

                                              Alias of MonoidHom.mrange_eq_top.

                                              @[simp]
                                              theorem MonoidHom.mrange_eq_top_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (hf : Function.Surjective f) :

                                              The range of a surjective monoid hom is the whole of the codomain.

                                              @[simp]
                                              theorem AddMonoidHom.mrange_eq_top_of_surjective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (hf : Function.Surjective f) :

                                              The range of a surjective AddMonoid hom is the whole of the codomain.

                                              @[deprecated MonoidHom.mrange_eq_top_of_surjective]
                                              theorem MonoidHom.mrange_top_of_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (hf : Function.Surjective f) :

                                              Alias of MonoidHom.mrange_eq_top_of_surjective.


                                              The range of a surjective monoid hom is the whole of the codomain.

                                              theorem MonoidHom.mclosure_preimage_le {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (s : Set N) :
                                              theorem MonoidHom.map_mclosure {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (s : Set M) :

                                              The image under a monoid hom of the submonoid generated by a set equals the submonoid generated by the image of the set.

                                              theorem AddMonoidHom.map_mclosure {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (s : Set M) :

                                              The image under an AddMonoid hom of the AddSubmonoid generated by a set equals the AddSubmonoid generated by the image of the set.

                                              @[simp]
                                              theorem MonoidHom.mclosure_range {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                                              @[simp]
                                              theorem AddMonoidHom.mclosure_range {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                                              def MonoidHom.restrict {M : Type u_1} [MulOneClass M] {N : Type u_5} {S : Type u_6} [MulOneClass N] [SetLike S M] [SubmonoidClass S M] (f : M →* N) (s : S) :
                                              s →* N

                                              Restriction of a monoid hom to a submonoid of the domain.

                                              Equations
                                              Instances For
                                                def AddMonoidHom.restrict {M : Type u_1} [AddZeroClass M] {N : Type u_5} {S : Type u_6} [AddZeroClass N] [SetLike S M] [AddSubmonoidClass S M] (f : M →+ N) (s : S) :
                                                s →+ N

                                                Restriction of an AddMonoid hom to an AddSubmonoid of the domain.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem MonoidHom.restrict_apply {M : Type u_1} [MulOneClass M] {N : Type u_5} {S : Type u_6} [MulOneClass N] [SetLike S M] [SubmonoidClass S M] (f : M →* N) (s : S) (x : s) :
                                                  (f.restrict s) x = f x
                                                  @[simp]
                                                  theorem AddMonoidHom.restrict_apply {M : Type u_1} [AddZeroClass M] {N : Type u_5} {S : Type u_6} [AddZeroClass N] [SetLike S M] [AddSubmonoidClass S M] (f : M →+ N) (s : S) (x : s) :
                                                  (f.restrict s) x = f x
                                                  @[simp]
                                                  theorem MonoidHom.restrict_mrange {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (f : M →* N) :
                                                  MonoidHom.mrange (f.restrict S) = Submonoid.map f S
                                                  @[simp]
                                                  theorem AddMonoidHom.restrict_mrange {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) (f : M →+ N) :
                                                  def MonoidHom.codRestrict {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {S : Type u_5} [SetLike S N] [SubmonoidClass S N] (f : M →* N) (s : S) (h : ∀ (x : M), f x s) :
                                                  M →* s

                                                  Restriction of a monoid hom to a submonoid of the codomain.

                                                  Equations
                                                  • f.codRestrict s h = { toFun := fun (n : M) => f n, , map_one' := , map_mul' := }
                                                  Instances For
                                                    def AddMonoidHom.codRestrict {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {S : Type u_5} [SetLike S N] [AddSubmonoidClass S N] (f : M →+ N) (s : S) (h : ∀ (x : M), f x s) :
                                                    M →+ s

                                                    Restriction of an AddMonoid hom to an AddSubmonoid of the codomain.

                                                    Equations
                                                    • f.codRestrict s h = { toFun := fun (n : M) => f n, , map_zero' := , map_add' := }
                                                    Instances For
                                                      @[simp]
                                                      theorem MonoidHom.codRestrict_apply {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {S : Type u_5} [SetLike S N] [SubmonoidClass S N] (f : M →* N) (s : S) (h : ∀ (x : M), f x s) (n : M) :
                                                      (f.codRestrict s h) n = f n,
                                                      @[simp]
                                                      theorem AddMonoidHom.codRestrict_apply {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {S : Type u_5} [SetLike S N] [AddSubmonoidClass S N] (f : M →+ N) (s : S) (h : ∀ (x : M), f x s) (n : M) :
                                                      (f.codRestrict s h) n = f n,
                                                      @[simp]
                                                      theorem MonoidHom.injective_codRestrict {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {S : Type u_5} [SetLike S N] [SubmonoidClass S N] (f : M →* N) (s : S) (h : ∀ (x : M), f x s) :
                                                      Function.Injective (f.codRestrict s h) Function.Injective f
                                                      @[simp]
                                                      theorem AddMonoidHom.injective_codRestrict {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {S : Type u_5} [SetLike S N] [AddSubmonoidClass S N] (f : M →+ N) (s : S) (h : ∀ (x : M), f x s) :
                                                      Function.Injective (f.codRestrict s h) Function.Injective f
                                                      def MonoidHom.mrangeRestrict {M : Type u_1} [MulOneClass M] {N : Type u_5} [MulOneClass N] (f : M →* N) :

                                                      Restriction of a monoid hom to its range interpreted as a submonoid.

                                                      Equations
                                                      Instances For
                                                        def AddMonoidHom.mrangeRestrict {M : Type u_1} [AddZeroClass M] {N : Type u_5} [AddZeroClass N] (f : M →+ N) :

                                                        Restriction of an AddMonoid hom to its range interpreted as a submonoid.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem MonoidHom.coe_mrangeRestrict {M : Type u_1} [MulOneClass M] {N : Type u_5} [MulOneClass N] (f : M →* N) (x : M) :
                                                          (f.mrangeRestrict x) = f x
                                                          @[simp]
                                                          theorem AddMonoidHom.coe_mrangeRestrict {M : Type u_1} [AddZeroClass M] {N : Type u_5} [AddZeroClass N] (f : M →+ N) (x : M) :
                                                          (f.mrangeRestrict x) = f x
                                                          theorem MonoidHom.mrangeRestrict_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) :
                                                          Function.Surjective f.mrangeRestrict
                                                          theorem AddMonoidHom.mrangeRestrict_surjective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) :
                                                          Function.Surjective f.mrangeRestrict
                                                          def MonoidHom.mker {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :

                                                          The multiplicative kernel of a monoid hom is the submonoid of elements x : G such that f x = 1

                                                          Equations
                                                          Instances For
                                                            def AddMonoidHom.mker {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :

                                                            The additive kernel of an AddMonoid hom is the AddSubmonoid of elements such that f x = 0

                                                            Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem MonoidHom.mem_mker {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {x : M} :
                                                              @[simp]
                                                              theorem AddMonoidHom.mem_mker {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {x : M} :
                                                              theorem MonoidHom.coe_mker {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                                                              (MonoidHom.mker f) = f ⁻¹' {1}
                                                              theorem AddMonoidHom.coe_mker {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                                                              (AddMonoidHom.mker f) = f ⁻¹' {0}
                                                              instance MonoidHom.decidableMemMker {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] [DecidableEq N] (f : F) :
                                                              DecidablePred fun (x : M) => x MonoidHom.mker f
                                                              Equations
                                                              instance AddMonoidHom.decidableMemMker {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] [DecidableEq N] (f : F) :
                                                              Equations
                                                              theorem MonoidHom.comap_mker {M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (g : N →* P) (f : M →* N) :
                                                              theorem AddMonoidHom.comap_mker {M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (g : N →+ P) (f : M →+ N) :
                                                              @[simp]
                                                              theorem MonoidHom.comap_bot' {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) :
                                                              @[simp]
                                                              theorem AddMonoidHom.comap_bot' {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) :
                                                              @[simp]
                                                              theorem MonoidHom.restrict_mker {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (f : M →* N) :
                                                              MonoidHom.mker (f.restrict S) = Submonoid.comap S.subtype (MonoidHom.mker f)
                                                              @[simp]
                                                              theorem AddMonoidHom.restrict_mker {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) (f : M →+ N) :
                                                              theorem MonoidHom.mrangeRestrict_mker {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) :
                                                              MonoidHom.mker f.mrangeRestrict = MonoidHom.mker f
                                                              theorem AddMonoidHom.mrangeRestrict_mker {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) :
                                                              @[simp]
                                                              theorem MonoidHom.mker_one {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] :
                                                              @[simp]
                                                              theorem MonoidHom.prod_map_comap_prod' {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {M' : Type u_5} {N' : Type u_6} [MulOneClass M'] [MulOneClass N'] (f : M →* N) (g : M' →* N') (S : Submonoid N) (S' : Submonoid N') :
                                                              Submonoid.comap (f.prodMap g) (S.prod S') = (Submonoid.comap f S).prod (Submonoid.comap g S')
                                                              theorem AddMonoidHom.prod_map_comap_prod' {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {M' : Type u_5} {N' : Type u_6} [AddZeroClass M'] [AddZeroClass N'] (f : M →+ N) (g : M' →+ N') (S : AddSubmonoid N) (S' : AddSubmonoid N') :
                                                              AddSubmonoid.comap (f.prodMap g) (S.prod S') = (AddSubmonoid.comap f S).prod (AddSubmonoid.comap g S')
                                                              theorem MonoidHom.mker_prod_map {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {M' : Type u_5} {N' : Type u_6} [MulOneClass M'] [MulOneClass N'] (f : M →* N) (g : M' →* N') :
                                                              MonoidHom.mker (f.prodMap g) = (MonoidHom.mker f).prod (MonoidHom.mker g)
                                                              theorem AddMonoidHom.mker_prod_map {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {M' : Type u_5} {N' : Type u_6} [AddZeroClass M'] [AddZeroClass N'] (f : M →+ N) (g : M' →+ N') :
                                                              @[simp]
                                                              @[simp]
                                                              @[simp]
                                                              theorem MonoidHom.mker_fst {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] :
                                                              @[simp]
                                                              theorem MonoidHom.mker_snd {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] :
                                                              def MonoidHom.submonoidComap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) (N' : Submonoid N) :
                                                              (Submonoid.comap f N') →* N'

                                                              The MonoidHom from the preimage of a submonoid to itself.

                                                              Equations
                                                              • f.submonoidComap N' = { toFun := fun (x : (Submonoid.comap f N')) => f x, , map_one' := , map_mul' := }
                                                              Instances For
                                                                def AddMonoidHom.addSubmonoidComap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (N' : AddSubmonoid N) :
                                                                (AddSubmonoid.comap f N') →+ N'

                                                                the AddMonoidHom from the preimage of an additive submonoid to itself.

                                                                Equations
                                                                • f.addSubmonoidComap N' = { toFun := fun (x : (AddSubmonoid.comap f N')) => f x, , map_zero' := , map_add' := }
                                                                Instances For
                                                                  @[simp]
                                                                  theorem MonoidHom.submonoidComap_apply_coe {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) (N' : Submonoid N) (x : (Submonoid.comap f N')) :
                                                                  ((f.submonoidComap N') x) = f x
                                                                  @[simp]
                                                                  theorem AddMonoidHom.addSubmonoidComap_apply_coe {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (N' : AddSubmonoid N) (x : (AddSubmonoid.comap f N')) :
                                                                  ((f.addSubmonoidComap N') x) = f x
                                                                  def MonoidHom.submonoidMap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) (M' : Submonoid M) :
                                                                  M' →* (Submonoid.map f M')

                                                                  The MonoidHom from a submonoid to its image. See MulEquiv.SubmonoidMap for a variant for MulEquivs.

                                                                  Equations
                                                                  • f.submonoidMap M' = { toFun := fun (x : M') => f x, , map_one' := , map_mul' := }
                                                                  Instances For
                                                                    def AddMonoidHom.addSubmonoidMap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) :
                                                                    M' →+ (AddSubmonoid.map f M')

                                                                    the AddMonoidHom from an additive submonoid to its image. See AddEquiv.AddSubmonoidMap for a variant for AddEquivs.

                                                                    Equations
                                                                    • f.addSubmonoidMap M' = { toFun := fun (x : M') => f x, , map_zero' := , map_add' := }
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem MonoidHom.submonoidMap_apply_coe {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) (M' : Submonoid M) (x : M') :
                                                                      ((f.submonoidMap M') x) = f x
                                                                      @[simp]
                                                                      theorem AddMonoidHom.addSubmonoidMap_apply_coe {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) (x : M') :
                                                                      ((f.addSubmonoidMap M') x) = f x
                                                                      theorem MonoidHom.submonoidMap_surjective {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) (M' : Submonoid M) :
                                                                      Function.Surjective (f.submonoidMap M')
                                                                      theorem AddMonoidHom.addSubmonoidMap_surjective {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) :
                                                                      Function.Surjective (f.addSubmonoidMap M')
                                                                      theorem Submonoid.prod_eq_bot_iff {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {s : Submonoid M} {t : Submonoid N} :
                                                                      s.prod t = s = t =
                                                                      theorem AddSubmonoid.prod_eq_bot_iff {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {s : AddSubmonoid M} {t : AddSubmonoid N} :
                                                                      s.prod t = s = t =
                                                                      theorem Submonoid.prod_eq_top_iff {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {s : Submonoid M} {t : Submonoid N} :
                                                                      s.prod t = s = t =
                                                                      theorem AddSubmonoid.prod_eq_top_iff {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {s : AddSubmonoid M} {t : AddSubmonoid N} :
                                                                      s.prod t = s = t =
                                                                      def Submonoid.inclusion {M : Type u_1} [MulOneClass M] {S T : Submonoid M} (h : S T) :
                                                                      S →* T

                                                                      The monoid hom associated to an inclusion of submonoids.

                                                                      Equations
                                                                      Instances For
                                                                        def AddSubmonoid.inclusion {M : Type u_1} [AddZeroClass M] {S T : AddSubmonoid M} (h : S T) :
                                                                        S →+ T

                                                                        The AddMonoid hom associated to an inclusion of submonoids.

                                                                        Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem Submonoid.mrange_subtype {M : Type u_1} [MulOneClass M] (s : Submonoid M) :
                                                                          MonoidHom.mrange s.subtype = s
                                                                          @[simp]
                                                                          @[deprecated Submonoid.mrange_subtype]
                                                                          theorem Submonoid.range_subtype {M : Type u_1} [MulOneClass M] (s : Submonoid M) :
                                                                          MonoidHom.mrange s.subtype = s

                                                                          Alias of Submonoid.mrange_subtype.

                                                                          @[deprecated AddSubmonoid.mrange_subtype]
                                                                          theorem Submonoid.eq_top_iff' {M : Type u_1} [MulOneClass M] (S : Submonoid M) :
                                                                          S = ∀ (x : M), x S
                                                                          theorem AddSubmonoid.eq_top_iff' {M : Type u_1} [AddZeroClass M] (S : AddSubmonoid M) :
                                                                          S = ∀ (x : M), x S
                                                                          theorem Submonoid.eq_bot_iff_forall {M : Type u_1} [MulOneClass M] (S : Submonoid M) :
                                                                          S = xS, x = 1
                                                                          theorem AddSubmonoid.eq_bot_iff_forall {M : Type u_1} [AddZeroClass M] (S : AddSubmonoid M) :
                                                                          S = xS, x = 0
                                                                          theorem Submonoid.nontrivial_iff_exists_ne_one {M : Type u_1} [MulOneClass M] (S : Submonoid M) :
                                                                          Nontrivial S xS, x 1

                                                                          A submonoid is either the trivial submonoid or nontrivial.

                                                                          An additive submonoid is either the trivial additive submonoid or nontrivial.

                                                                          theorem Submonoid.bot_or_exists_ne_one {M : Type u_1} [MulOneClass M] (S : Submonoid M) :
                                                                          S = xS, x 1

                                                                          A submonoid is either the trivial submonoid or contains a nonzero element.

                                                                          theorem AddSubmonoid.bot_or_exists_ne_zero {M : Type u_1} [AddZeroClass M] (S : AddSubmonoid M) :
                                                                          S = xS, x 0

                                                                          An additive submonoid is either the trivial additive submonoid or contains a nonzero element.

                                                                          def MulEquiv.submonoidCongr {M : Type u_1} [MulOneClass M] {S T : Submonoid M} (h : S = T) :
                                                                          S ≃* T

                                                                          Makes the identity isomorphism from a proof that two submonoids of a multiplicative monoid are equal.

                                                                          Equations
                                                                          Instances For
                                                                            def AddEquiv.addSubmonoidCongr {M : Type u_1} [AddZeroClass M] {S T : AddSubmonoid M} (h : S = T) :
                                                                            S ≃+ T

                                                                            Makes the identity additive isomorphism from a proof two submonoids of an additive monoid are equal.

                                                                            Equations
                                                                            Instances For
                                                                              def MulEquiv.ofLeftInverse' {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) {g : NM} (h : Function.LeftInverse g f) :

                                                                              A monoid homomorphism f : M →* N with a left-inverse g : N → M defines a multiplicative equivalence between M and f.mrange. This is a bidirectional version of MonoidHom.mrange_restrict.

                                                                              Equations
                                                                              Instances For
                                                                                def AddEquiv.ofLeftInverse' {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) {g : NM} (h : Function.LeftInverse g f) :

                                                                                An additive monoid homomorphism f : M →+ N with a left-inverse g : N → M defines an additive equivalence between M and f.mrange. This is a bidirectional version of AddMonoidHom.mrange_restrict.

                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem MulEquiv.ofLeftInverse'_symm_apply {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) {g : NM} (h : Function.LeftInverse g f) (a✝ : (MonoidHom.mrange f)) :
                                                                                  (MulEquiv.ofLeftInverse' f h).symm a✝ = g a✝
                                                                                  @[simp]
                                                                                  theorem AddEquiv.ofLeftInverse'_apply {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) {g : NM} (h : Function.LeftInverse g f) (a : M) :
                                                                                  (AddEquiv.ofLeftInverse' f h) a = f.mrangeRestrict a
                                                                                  @[simp]
                                                                                  theorem AddEquiv.ofLeftInverse'_symm_apply {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) {g : NM} (h : Function.LeftInverse g f) (a✝ : (AddMonoidHom.mrange f)) :
                                                                                  (AddEquiv.ofLeftInverse' f h).symm a✝ = g a✝
                                                                                  @[simp]
                                                                                  theorem MulEquiv.ofLeftInverse'_apply {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M →* N) {g : NM} (h : Function.LeftInverse g f) (a : M) :
                                                                                  (MulEquiv.ofLeftInverse' f h) a = f.mrangeRestrict a
                                                                                  def MulEquiv.submonoidMap {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M ≃* N) (S : Submonoid M) :
                                                                                  S ≃* (Submonoid.map e S)

                                                                                  A MulEquiv φ between two monoids M and N induces a MulEquiv between a submonoid S ≤ M and the submonoid φ(S) ≤ N. See MonoidHom.submonoidMap for a variant for MonoidHoms.

                                                                                  Equations
                                                                                  • e.submonoidMap S = { toEquiv := (↑e).image S, map_mul' := }
                                                                                  Instances For
                                                                                    def AddEquiv.addSubmonoidMap {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) :
                                                                                    S ≃+ (AddSubmonoid.map e S)

                                                                                    An AddEquiv φ between two additive monoids M and N induces an AddEquiv between a submonoid S ≤ M and the submonoid φ(S) ≤ N. See AddMonoidHom.addSubmonoidMap for a variant for AddMonoidHoms.

                                                                                    Equations
                                                                                    • e.addSubmonoidMap S = { toEquiv := (↑e).image S, map_add' := }
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem MulEquiv.coe_submonoidMap_apply {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M ≃* N) (S : Submonoid M) (g : S) :
                                                                                      ((e.submonoidMap S) g) = e g
                                                                                      @[simp]
                                                                                      theorem AddEquiv.coe_addSubmonoidMap_apply {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) (g : S) :
                                                                                      ((e.addSubmonoidMap S) g) = e g
                                                                                      @[simp]
                                                                                      theorem MulEquiv.submonoidMap_symm_apply {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M ≃* N) (S : Submonoid M) (g : (Submonoid.map (↑e) S)) :
                                                                                      (e.submonoidMap S).symm g = e.symm g,
                                                                                      @[simp]
                                                                                      theorem AddEquiv.add_submonoid_map_symm_apply {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) (g : (AddSubmonoid.map (↑e) S)) :
                                                                                      (e.addSubmonoidMap S).symm g = e.symm g,
                                                                                      @[simp]
                                                                                      theorem Submonoid.equivMapOfInjective_coe_mulEquiv {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (e : M ≃* N) :
                                                                                      S.equivMapOfInjective e = e.submonoidMap S
                                                                                      @[simp]
                                                                                      theorem AddSubmonoid.equivMapOfInjective_coe_addEquiv {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) (e : M ≃+ N) :
                                                                                      S.equivMapOfInjective e = e.addSubmonoidMap S

                                                                                      Actions by Submonoids #

                                                                                      These instances transfer the action by an element m : M of a monoid M written as m • a onto the action by an element s : S of a submonoid S : Submonoid M such that s • a = (s : M) • a.

                                                                                      These instances work particularly well in conjunction with Monoid.toMulAction, enabling s • m as an alias for ↑s * m.

                                                                                      instance Submonoid.smul {M' : Type u_4} {α : Type u_5} [MulOneClass M'] [SMul M' α] (S : Submonoid M') :
                                                                                      SMul (↥S) α
                                                                                      Equations
                                                                                      instance AddSubmonoid.vadd {M' : Type u_4} {α : Type u_5} [AddZeroClass M'] [VAdd M' α] (S : AddSubmonoid M') :
                                                                                      VAdd (↥S) α
                                                                                      Equations
                                                                                      theorem Submonoid.smulCommClass_left {M' : Type u_4} {α : Type u_5} {β : Type u_6} [MulOneClass M'] [SMul M' β] [SMul α β] [SMulCommClass M' α β] (S : Submonoid M') :
                                                                                      SMulCommClass (↥S) α β
                                                                                      theorem AddSubmonoid.vaddCommClass_left {M' : Type u_4} {α : Type u_5} {β : Type u_6} [AddZeroClass M'] [VAdd M' β] [VAdd α β] [VAddCommClass M' α β] (S : AddSubmonoid M') :
                                                                                      VAddCommClass (↥S) α β
                                                                                      theorem Submonoid.smulCommClass_right {M' : Type u_4} {α : Type u_5} {β : Type u_6} [MulOneClass M'] [SMul α β] [SMul M' β] [SMulCommClass α M' β] (S : Submonoid M') :
                                                                                      SMulCommClass α (↥S) β
                                                                                      theorem AddSubmonoid.vaddCommClass_right {M' : Type u_4} {α : Type u_5} {β : Type u_6} [AddZeroClass M'] [VAdd α β] [VAdd M' β] [VAddCommClass α M' β] (S : AddSubmonoid M') :
                                                                                      VAddCommClass α (↥S) β
                                                                                      theorem Submonoid.isScalarTower {M' : Type u_4} {α : Type u_5} {β : Type u_6} [MulOneClass M'] [SMul α β] [SMul M' α] [SMul M' β] [IsScalarTower M' α β] (S : Submonoid M') :
                                                                                      IsScalarTower (↥S) α β

                                                                                      Note that this provides IsScalarTower S M' M' which is needed by SMulMulAssoc.

                                                                                      theorem Submonoid.smul_def {M' : Type u_4} {α : Type u_5} [MulOneClass M'] [SMul M' α] {S : Submonoid M'} (g : S) (a : α) :
                                                                                      g a = g a
                                                                                      theorem AddSubmonoid.vadd_def {M' : Type u_4} {α : Type u_5} [AddZeroClass M'] [VAdd M' α] {S : AddSubmonoid M'} (g : S) (a : α) :
                                                                                      g +ᵥ a = g +ᵥ a
                                                                                      @[simp]
                                                                                      theorem Submonoid.mk_smul {M' : Type u_4} {α : Type u_5} [MulOneClass M'] [SMul M' α] {S : Submonoid M'} (g : M') (hg : g S) (a : α) :
                                                                                      g, hg a = g a
                                                                                      @[simp]
                                                                                      theorem AddSubmonoid.mk_vadd {M' : Type u_4} {α : Type u_5} [AddZeroClass M'] [VAdd M' α] {S : AddSubmonoid M'} (g : M') (hg : g S) (a : α) :
                                                                                      g, hg +ᵥ a = g +ᵥ a
                                                                                      theorem Submonoid.faithfulSMul {M' : Type u_4} {α : Type u_5} [MulOneClass M'] [SMul M' α] {S : Submonoid M'} [FaithfulSMul M' α] :
                                                                                      FaithfulSMul (↥S) α
                                                                                      instance Submonoid.mulAction {M' : Type u_4} {α : Type u_5} [Monoid M'] [MulAction M' α] (S : Submonoid M') :
                                                                                      MulAction (↥S) α

                                                                                      The action by a submonoid is the action by the underlying monoid.

                                                                                      Equations
                                                                                      instance AddSubmonoid.addAction {M' : Type u_4} {α : Type u_5} [AddMonoid M'] [AddAction M' α] (S : AddSubmonoid M') :
                                                                                      AddAction (↥S) α

                                                                                      The additive action by an AddSubmonoid is the action by the underlying AddMonoid.

                                                                                      Equations

                                                                                      The multiplicative equivalence between the type of units of M and the submonoid of unit elements of M.

                                                                                      Equations
                                                                                      • Submonoid.unitsTypeEquivIsUnitSubmonoid = { toFun := fun (x : Mˣ) => x, , invFun := fun (x : (IsUnit.submonoid M)) => IsUnit.unit , left_inv := , right_inv := , map_mul' := }
                                                                                      Instances For

                                                                                        The additive equivalence between the type of additive units of M and the additive submonoid whose elements are the additive units of M.

                                                                                        Equations
                                                                                        • One or more equations did not get rendered due to their size.
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid_apply_coe {M : Type u_1} [AddMonoid M] (x : AddUnits M) :
                                                                                          (AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid x) = x
                                                                                          @[simp]
                                                                                          theorem Submonoid.unitsTypeEquivIsUnitSubmonoid_apply_coe {M : Type u_1} [Monoid M] (x : Mˣ) :
                                                                                          (Submonoid.unitsTypeEquivIsUnitSubmonoid x) = x
                                                                                          @[simp]
                                                                                          theorem AddSubmonoid.val_neg_addUnitsTypeEquivIsAddUnitAddSubmonoid_symm_apply {M : Type u_1} [AddMonoid M] (x : (IsAddUnit.addSubmonoid M)) :
                                                                                          (-AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid.symm x) = (-Classical.choose )
                                                                                          @[simp]
                                                                                          theorem Submonoid.val_inv_unitsTypeEquivIsUnitSubmonoid_symm_apply {M : Type u_1} [Monoid M] (x : (IsUnit.submonoid M)) :
                                                                                          (Submonoid.unitsTypeEquivIsUnitSubmonoid.symm x)⁻¹ = (Classical.choose )⁻¹
                                                                                          @[simp]
                                                                                          theorem Submonoid.val_unitsTypeEquivIsUnitSubmonoid_symm_apply {M : Type u_1} [Monoid M] (x : (IsUnit.submonoid M)) :
                                                                                          (Submonoid.unitsTypeEquivIsUnitSubmonoid.symm x) = x
                                                                                          @[simp]
                                                                                          theorem AddSubmonoid.val_addUnitsTypeEquivIsAddUnitAddSubmonoid_symm_apply {M : Type u_1} [AddMonoid M] (x : (IsAddUnit.addSubmonoid M)) :
                                                                                          (AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid.symm x) = x
                                                                                          theorem Submonoid.map_comap_eq {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid N) :
                                                                                          theorem AddSubmonoid.map_comap_eq {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid N) :
                                                                                          theorem Submonoid.map_comap_eq_self {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid N} (h : S MonoidHom.mrange f) :
                                                                                          theorem AddSubmonoid.map_comap_eq_self {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {S : AddSubmonoid N} (h : S AddMonoidHom.mrange f) :