Faithful group actions #
This file provides typeclasses for faithful actions.
Notation #
Implementation details #
This file should avoid depending on other parts of GroupTheory
, to avoid import cycles.
More sophisticated lemmas belong in GroupTheory.GroupAction
.
Tags #
group action
Faithful actions #
theorem
smul_left_injective'
{M : Type u_1}
{α : Type u_3}
[SMul M α]
[FaithfulSMul M α]
:
Function.Injective fun (x1 : M) (x2 : α) => x1 • x2
theorem
vadd_left_injective'
{M : Type u_1}
{α : Type u_3}
[VAdd M α]
[FaithfulVAdd M α]
:
Function.Injective fun (x1 : M) (x2 : α) => x1 +ᵥ x2
Monoid.toMulAction
is faithful on cancellative monoids.
instance
AddRightCancelMonoid.faithfulVAdd
{α : Type u_3}
[AddRightCancelMonoid α]
:
FaithfulVAdd α α
AddMonoid.toAddAction
is faithful on additive cancellative monoids.
instance
LefttCancelMonoid.to_faithfulSMul_mulOpposite
{α : Type u_3}
[LeftCancelMonoid α]
:
FaithfulSMul αᵐᵒᵖ α
Monoid.toOppositeMulAction
is faithful on cancellative monoids.
instance
LefttCancelMonoid.to_faithfulVAdd_addOpposite
{α : Type u_3}
[AddLeftCancelMonoid α]
:
FaithfulVAdd αᵃᵒᵖ α
AddMonoid.toOppositeAddAction
is faithful on additive cancellative monoids.
theorem
faithfulSMul_iff_injective_smul_one
(R : Type u_4)
(A : Type u_5)
[MulOneClass A]
[SMul R A]
[IsScalarTower R A A]
:
theorem
IsScalarTower.to₁₂₃
(M : Type u_4)
(N : Type u_5)
(P : Type u_6)
(Q : Type u_7)
[SMul M N]
[SMul M P]
[SMul M Q]
[SMul N P]
[SMul N Q]
[SMul P Q]
[FaithfulSMul P Q]
[IsScalarTower M N Q]
[IsScalarTower M P Q]
[IsScalarTower N P Q]
:
IsScalarTower M N P
Let Q / P / N / M
be a tower. If Q / N / M
, Q / P / M
and Q / P / N
are
scalar towers, then P / N / M
is also a scalar tower.
theorem
VAddAssocClass.to₁₂₃
(M : Type u_4)
(N : Type u_5)
(P : Type u_6)
(Q : Type u_7)
[VAdd M N]
[VAdd M P]
[VAdd M Q]
[VAdd N P]
[VAdd N Q]
[VAdd P Q]
[FaithfulVAdd P Q]
[VAddAssocClass M N Q]
[VAddAssocClass M P Q]
[VAddAssocClass N P Q]
:
VAddAssocClass M N P