Documentation

Mathlib.Algebra.Group.Action.Faithful

Faithful group actions #

This file provides typeclasses for faithful actions.

Notation #

Implementation details #

This file should avoid depending on other parts of GroupTheory, to avoid import cycles. More sophisticated lemmas belong in GroupTheory.GroupAction.

Tags #

group action

Faithful actions #

class FaithfulVAdd (G : Type u_9) (P : Type u_10) [VAdd G P] :

Typeclass for faithful actions.

  • eq_of_vadd_eq_vadd : ∀ {g₁ g₂ : G}, (∀ (p : P), g₁ +ᵥ p = g₂ +ᵥ p)g₁ = g₂

    Two elements g₁ and g₂ are equal whenever they act in the same way on all points.

Instances
    theorem FaithfulVAdd.eq_of_vadd_eq_vadd {G : Type u_9} {P : Type u_10} :
    ∀ {inst : VAdd G P} [self : FaithfulVAdd G P] {g₁ g₂ : G}, (∀ (p : P), g₁ +ᵥ p = g₂ +ᵥ p)g₁ = g₂

    Two elements g₁ and g₂ are equal whenever they act in the same way on all points.

    class FaithfulSMul (M : Type u_9) (α : Type u_10) [SMul M α] :

    Typeclass for faithful actions.

    • eq_of_smul_eq_smul : ∀ {m₁ m₂ : M}, (∀ (a : α), m₁ a = m₂ a)m₁ = m₂

      Two elements m₁ and m₂ are equal whenever they act in the same way on all points.

    Instances
      theorem FaithfulSMul.eq_of_smul_eq_smul {M : Type u_9} {α : Type u_10} :
      ∀ {inst : SMul M α} [self : FaithfulSMul M α] {m₁ m₂ : M}, (∀ (a : α), m₁ a = m₂ a)m₁ = m₂

      Two elements m₁ and m₂ are equal whenever they act in the same way on all points.

      theorem vadd_left_injective' {M : Type u_1} {α : Type u_5} [VAdd M α] [FaithfulVAdd M α] :
      Function.Injective fun (x1 : M) (x2 : α) => x1 +ᵥ x2
      theorem smul_left_injective' {M : Type u_1} {α : Type u_5} [SMul M α] [FaithfulSMul M α] :
      Function.Injective fun (x1 : M) (x2 : α) => x1 x2

      AddMonoid.toAddAction is faithful on additive cancellative monoids.

      Equations
      • =

      Monoid.toMulAction is faithful on cancellative monoids.

      Equations
      • =

      Function.End.applyMulAction is faithful.

      Equations
      • =