Normed affine spaces over an inner product space #
theorem
inner_vsub_left_eq_zero_symm
{𝕜 : Type u_1}
{V : Type u_2}
{P : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup V]
[InnerProductSpace 𝕜 V]
[MetricSpace P]
[NormedAddTorsor V P]
{a b : P}
{v : V}
:
theorem
inner_vsub_right_eq_zero_symm
{𝕜 : Type u_1}
{V : Type u_2}
{P : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup V]
[InnerProductSpace 𝕜 V]
[MetricSpace P]
[NormedAddTorsor V P]
{v : V}
{a b : P}
:
In this section, the first left
/right
indicates where the common argument to vsub
is,
and the section refers to the argument of inner
that ends up in the dist
.
The lemma shapes are such that the relevant argument of inner
remains unchanged,
and that the other vsub
preserves the position of the unchanging argument.
theorem
inner_vsub_vsub_left_eq_dist_sq_left_iff
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{a b c : P}
:
theorem
inner_vsub_vsub_left_eq_dist_sq_right_iff
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{a b c : P}
:
theorem
inner_vsub_vsub_right_eq_dist_sq_left_iff
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{a b c : P}
:
theorem
inner_vsub_vsub_right_eq_dist_sq_right_iff
{V : Type u_2}
{P : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{a b c : P}
: