Completion of an inner product space #
We show that the separation quotient and the completion of an inner product space are inner product spaces.
theorem
Inseparable.inner_eq_inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{xβ xβ yβ yβ : E}
(hx : Inseparable xβ xβ)
(hy : Inseparable yβ yβ)
:
instance
SeparationQuotient.instInner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
:
Inner π (SeparationQuotient E)
Equations
- SeparationQuotient.instInner = { inner := SeparationQuotient.liftβ inner β― }
@[simp]
theorem
SeparationQuotient.inner_mk_mk
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
(x y : E)
:
instance
SeparationQuotient.instInnerProductSpace
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
:
InnerProductSpace π (SeparationQuotient E)
Equations
- SeparationQuotient.instInnerProductSpace = InnerProductSpace.mk β― β― β― β―
instance
UniformSpace.Completion.toInner
{π' : Type u_4}
{E' : Type u_5}
[TopologicalSpace π']
[UniformSpace E']
[Inner π' E']
:
Inner π' (Completion E')
Equations
- UniformSpace.Completion.toInner = { inner := Function.curry (β―.extend (Function.uncurry inner)) }
@[simp]
theorem
UniformSpace.Completion.inner_coe
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
(a b : E)
:
theorem
UniformSpace.Completion.continuous_inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
:
theorem
UniformSpace.Completion.Continuous.inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{Ξ± : Type u_4}
[TopologicalSpace Ξ±]
{f g : Ξ± β Completion E}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : Ξ±) => inner (f x) (g x)
instance
UniformSpace.Completion.innerProductSpace
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
:
InnerProductSpace π (Completion E)
Equations
- UniformSpace.Completion.innerProductSpace = InnerProductSpace.mk β― β― β― β―