Documentation

Mathlib.Analysis.InnerProductSpace.Continuous

Continuity of inner product #

We show that the inner product is continuous, continuous_inner.

Tags #

inner product space, Hilbert space, norm

Continuity of the inner product #

theorem isBoundedBilinearMap_inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] [NormedSpace ℝ E] [IsScalarTower ℝ π•œ E] :
IsBoundedBilinearMap ℝ fun (p : E Γ— E) => inner p.1 p.2

When an inner product space E over π•œ is considered as a real normed space, its inner product satisfies IsBoundedBilinearMap.

In order to state these results, we need a NormedSpace ℝ E instance. We will later establish such an instance by restriction-of-scalars, InnerProductSpace.rclikeToReal π•œ E, but this instance may be not definitionally equal to some other β€œnatural” instance. So, we assume [NormedSpace ℝ E].

theorem continuous_inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] :
Continuous fun (p : E Γ— E) => inner p.1 p.2
theorem Filter.Tendsto.inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {Ξ± : Type u_4} {f g : Ξ± β†’ E} {l : Filter Ξ±} {x y : E} (hf : Tendsto f l (nhds x)) (hg : Tendsto g l (nhds y)) :
Tendsto (fun (t : Ξ±) => Inner.inner (f t) (g t)) l (nhds (Inner.inner x y))
theorem ContinuousWithinAt.inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {Ξ± : Type u_4} [TopologicalSpace Ξ±] {f g : Ξ± β†’ E} {x : Ξ±} {s : Set Ξ±} (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) :
ContinuousWithinAt (fun (t : Ξ±) => Inner.inner (f t) (g t)) s x
theorem ContinuousAt.inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {Ξ± : Type u_4} [TopologicalSpace Ξ±] {f g : Ξ± β†’ E} {x : Ξ±} (hf : ContinuousAt f x) (hg : ContinuousAt g x) :
ContinuousAt (fun (t : Ξ±) => Inner.inner (f t) (g t)) x
theorem ContinuousOn.inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {Ξ± : Type u_4} [TopologicalSpace Ξ±] {f g : Ξ± β†’ E} {s : Set Ξ±} (hf : ContinuousOn f s) (hg : ContinuousOn g s) :
ContinuousOn (fun (t : Ξ±) => Inner.inner (f t) (g t)) s
theorem Continuous.inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {Ξ± : Type u_4} [TopologicalSpace Ξ±] {f g : Ξ± β†’ E} (hf : Continuous f) (hg : Continuous g) :
Continuous fun (t : Ξ±) => Inner.inner (f t) (g t)