Continuity of inner product #
We show that the inner product is continuous, continuous_inner
.
Tags #
inner product space, Hilbert space, norm
Continuity of the inner product #
theorem
isBoundedBilinearMap_inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
[NormedSpace β E]
[IsScalarTower β π E]
:
IsBoundedBilinearMap β fun (p : E Γ E) => inner p.1 p.2
When an inner product space E
over π
is considered as a real normed space, its inner
product satisfies IsBoundedBilinearMap
.
In order to state these results, we need a NormedSpace β E
instance. We will later establish
such an instance by restriction-of-scalars, InnerProductSpace.rclikeToReal π E
, but this
instance may be not definitionally equal to some other βnaturalβ instance. So, we assume
[NormedSpace β E]
.
theorem
continuous_inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
:
Continuous fun (p : E Γ E) => inner p.1 p.2
theorem
Filter.Tendsto.inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{Ξ± : Type u_4}
{f g : Ξ± β E}
{l : Filter Ξ±}
{x y : E}
(hf : Tendsto f l (nhds x))
(hg : Tendsto g l (nhds y))
:
Tendsto (fun (t : Ξ±) => Inner.inner (f t) (g t)) l (nhds (Inner.inner x y))
theorem
ContinuousWithinAt.inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{Ξ± : Type u_4}
[TopologicalSpace Ξ±]
{f g : Ξ± β E}
{x : Ξ±}
{s : Set Ξ±}
(hf : ContinuousWithinAt f s x)
(hg : ContinuousWithinAt g s x)
:
ContinuousWithinAt (fun (t : Ξ±) => Inner.inner (f t) (g t)) s x
theorem
ContinuousAt.inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{Ξ± : Type u_4}
[TopologicalSpace Ξ±]
{f g : Ξ± β E}
{x : Ξ±}
(hf : ContinuousAt f x)
(hg : ContinuousAt g x)
:
ContinuousAt (fun (t : Ξ±) => Inner.inner (f t) (g t)) x
theorem
ContinuousOn.inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{Ξ± : Type u_4}
[TopologicalSpace Ξ±]
{f g : Ξ± β E}
{s : Set Ξ±}
(hf : ContinuousOn f s)
(hg : ContinuousOn g s)
:
ContinuousOn (fun (t : Ξ±) => Inner.inner (f t) (g t)) s
theorem
Continuous.inner
{π : Type u_1}
{E : Type u_2}
[RCLike π]
[SeminormedAddCommGroup E]
[InnerProductSpace π E]
{Ξ± : Type u_4}
[TopologicalSpace Ξ±]
{f g : Ξ± β E}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (t : Ξ±) => Inner.inner (f t) (g t)