Gram Matrices #
This file defines Gram matrices and proves their positive semidefiniteness.
Results require RCLike ๐
.
Main definition #
Matrix.gram
: theMatrix n n ๐
withโชv i, v jโซ
ati j : n
, wherev : n โ E
for anInner ๐ E
.
Main results #
Matrix.posSemidef_gram
: Gram matrices are positive semidefinite.Matrix.posDef_gram_iff_linearIndependent
: Linear independence ofv
is equivalent to positive definiteness ofgram ๐ v
.
@[simp]
theorem
Matrix.gram_zero
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
:
@[simp]
theorem
Matrix.gram_single
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[DecidableEq n]
(i : n)
(x : E)
:
theorem
Matrix.submatrix_gram
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
(v : n โ E)
{m : Set n}
(f : โm โ n)
:
theorem
Matrix.isHermitian_gram
{E : Type u_1}
{n : Type u_2}
(๐ : Type u_4)
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
(v : n โ E)
:
(gram ๐ v).IsHermitian
A Gram matrix is Hermitian.
theorem
Matrix.star_dotProduct_gram_mulVec
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
(v : n โ E)
(x y : n โ ๐)
:
theorem
Matrix.posSemidef_gram
{E : Type u_1}
{n : Type u_2}
(๐ : Type u_4)
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
(v : n โ E)
:
(gram ๐ v).PosSemidef
A Gram matrix is positive semidefinite.
theorem
Matrix.linearIndependent_of_posDef_gram
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
{v : n โ E}
(h_gram : (gram ๐ v).PosDef)
:
LinearIndependent ๐ v
In a normed space, positive definiteness of gram ๐ v
implies linear independence of v
.
theorem
Matrix.posDef_gram_of_linearIndependent
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
{v : n โ E}
(h_li : LinearIndependent ๐ v)
:
In a normed space, linear independence of v
implies positive definiteness of gram ๐ v
.
theorem
Matrix.posDef_gram_iff_linearIndependent
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
{v : n โ E}
:
In a normed space, linear independence of v
is equivalent to positive definiteness of
gram ๐ v
.