Mellin inversion formula #
We derive the Mellin inversion formula as a consequence of the Fourier inversion formula.
Main results #
mellin_inversion: The inverse Mellin transform of the Mellin transform applied tox > 0is x.
@[deprecated mellin_eq_fourier (since := "2025-11-16")]
theorem
mellin_eq_fourierIntegral
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
(f : ℝ → E)
{s : ℂ}
:
Alias of mellin_eq_fourier.
@[deprecated mellinInv_eq_fourierInv (since := "2025-11-16")]
theorem
mellinInv_eq_fourierIntegralInv
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
(σ : ℝ)
(f : ℂ → E)
{x : ℝ}
(hx : 0 < x)
:
Alias of mellinInv_eq_fourierInv.
theorem
mellinInv_mellin_eq
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[CompleteSpace E]
(σ : ℝ)
(f : ℝ → E)
{x : ℝ}
(hx : 0 < x)
(hf : MellinConvergent f ↑σ)
(hFf : Complex.VerticalIntegrable (mellin f) σ MeasureTheory.volume)
(hfx : ContinuousAt f x)
:
The inverse Mellin transform of the Mellin transform applied to x > 0 is x.
@[deprecated mellinInv_mellin_eq (since := "2025-11-16")]
theorem
mellin_inversion
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[CompleteSpace E]
(σ : ℝ)
(f : ℝ → E)
{x : ℝ}
(hx : 0 < x)
(hf : MellinConvergent f ↑σ)
(hFf : Complex.VerticalIntegrable (mellin f) σ MeasureTheory.volume)
(hfx : ContinuousAt f x)
:
Alias of mellinInv_mellin_eq.
The inverse Mellin transform of the Mellin transform applied to x > 0 is x.