Completion of normed group homs #
Given two (semi) normed groups G
and H
and a normed group hom f : NormedAddGroupHom G H
,
we build and study a normed group hom
f.completion : NormedAddGroupHom (completion G) (completion H)
such that the diagram
f
G -----------> H
| |
| |
| |
V V
completion G -----------> completion H
f.completion
commutes. The map itself comes from the general theory of completion of uniform spaces, but here we want a normed group hom, study its operator norm and kernel.
The vertical maps in the above diagrams are also normed group homs constructed in this file.
Main definitions and results: #
NormedAddGroupHom.completion
: see the discussion above.NormedAddCommGroup.toCompl : NormedAddGroupHom G (completion G)
: the canonical map fromG
to its completion, as a normed group homNormedAddGroupHom.completion_toCompl
: the above diagram indeed commutes.NormedAddGroupHom.norm_completion
:‖f.completion‖ = ‖f‖
NormedAddGroupHom.ker_le_ker_completion
: the kernel off.completion
contains the image of the kernel off
.NormedAddGroupHom.ker_completion
: the kernel off.completion
is the closure of the image of the kernel off
under an assumption thatf
is quantitatively surjective onto its image.NormedAddGroupHom.extension
: ifH
is complete, the extension off : NormedAddGroupHom G H
to aNormedAddGroupHom (completion G) H
.
The normed group hom induced between completions.
Instances For
Completion of normed group homs as a normed group hom.
Instances For
The map from a normed group to its completion, as a normed group hom.
Instances For
If H
is complete, the extension of f : NormedAddGroupHom G H
to a
NormedAddGroupHom (completion G) H
.