Completion of normed group homs #
Given two (semi) normed groups G
and H
and a normed group hom f : NormedAddGroupHom G H
,
we build and study a normed group hom
f.completion : NormedAddGroupHom (completion G) (completion H)
such that the diagram
f
G -----------> H
| |
| |
| |
V V
completion G -----------> completion H
f.completion
commutes. The map itself comes from the general theory of completion of uniform spaces, but here we want a normed group hom, study its operator norm and kernel.
The vertical maps in the above diagrams are also normed group homs constructed in this file.
Main definitions and results: #
NormedAddGroupHom.completion
: see the discussion above.NormedAddCommGroup.toCompl : NormedAddGroupHom G (completion G)
: the canonical map fromG
to its completion, as a normed group homNormedAddGroupHom.completion_toCompl
: the above diagram indeed commutes.NormedAddGroupHom.norm_completion
:‖f.completion‖ = ‖f‖
NormedAddGroupHom.ker_le_ker_completion
: the kernel off.completion
contains the image of the kernel off
.NormedAddGroupHom.ker_completion
: the kernel off.completion
is the closure of the image of the kernel off
under an assumption thatf
is quantitatively surjective onto its image.NormedAddGroupHom.extension
: ifH
is complete, the extension off : NormedAddGroupHom G H
to aNormedAddGroupHom (completion G) H
.
def
NormedAddGroupHom.completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
The normed group hom induced between completions.
Equations
- f.completion = NormedAddGroupHom.ofLipschitz (f.toAddMonoidHom.completion ⋯) ⋯
Instances For
theorem
NormedAddGroupHom.completion_def
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(x : UniformSpace.Completion G)
:
f.completion x = UniformSpace.Completion.map (⇑f) x
@[simp]
theorem
NormedAddGroupHom.completion_coe_to_fun
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
⇑f.completion = UniformSpace.Completion.map ⇑f
theorem
NormedAddGroupHom.completion_coe
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(g : G)
:
f.completion ↑g = ↑(f g)
@[simp]
theorem
NormedAddGroupHom.completion_coe'
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(g : G)
:
UniformSpace.Completion.map ⇑f ↑g = ↑(f g)
def
normedAddGroupHomCompletionHom
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
:
Completion of normed group homs as a normed group hom.
Equations
- normedAddGroupHomCompletionHom = { toFun := NormedAddGroupHom.completion, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
normedAddGroupHomCompletionHom_apply
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
normedAddGroupHomCompletionHom f = f.completion
@[simp]
theorem
NormedAddGroupHom.completion_id
{G : Type u_1}
[SeminormedAddCommGroup G]
:
(id G).completion = id (UniformSpace.Completion G)
theorem
NormedAddGroupHom.completion_comp
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
{K : Type u_3}
[SeminormedAddCommGroup K]
(f : NormedAddGroupHom G H)
(g : NormedAddGroupHom H K)
:
g.completion.comp f.completion = (g.comp f).completion
theorem
NormedAddGroupHom.completion_neg
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.completion_add
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f g : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.completion_sub
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f g : NormedAddGroupHom G H)
:
@[simp]
theorem
NormedAddGroupHom.zero_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
:
completion 0 = 0
The map from a normed group to its completion, as a normed group hom.
Equations
- NormedAddCommGroup.toCompl = { toFun := UniformSpace.Completion.coe', map_add' := ⋯, bound' := ⋯ }
Instances For
@[simp]
theorem
NormedAddCommGroup.toCompl_apply
{G : Type u_1}
[SeminormedAddCommGroup G]
(a✝ : G)
:
toCompl a✝ = ↑a✝
@[simp]
theorem
NormedAddGroupHom.completion_toCompl
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
f.completion.comp NormedAddCommGroup.toCompl = NormedAddCommGroup.toCompl.comp f
@[simp]
theorem
NormedAddGroupHom.norm_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.ker_le_ker_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
(NormedAddCommGroup.toCompl.comp (incl f.ker)).range ≤ f.completion.ker
theorem
NormedAddGroupHom.ker_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
{f : NormedAddGroupHom G H}
{C : ℝ}
(h : f.SurjectiveOnWith f.range C)
:
↑f.completion.ker = closure ↑(NormedAddCommGroup.toCompl.comp (incl f.ker)).range
def
NormedAddGroupHom.extension
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[T0Space H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
:
If H
is complete, the extension of f : NormedAddGroupHom G H
to a
NormedAddGroupHom (completion G) H
.
Equations
- f.extension = NormedAddGroupHom.ofLipschitz (f.toAddMonoidHom.extension ⋯) ⋯
Instances For
theorem
NormedAddGroupHom.extension_def
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[T0Space H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
(v : G)
:
f.extension ↑v = UniformSpace.Completion.extension ⇑f ↑v
@[simp]
theorem
NormedAddGroupHom.extension_coe
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[T0Space H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
(v : G)
:
f.extension ↑v = f v
theorem
NormedAddGroupHom.extension_coe_to_fun
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[T0Space H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
:
⇑f.extension = UniformSpace.Completion.extension ⇑f
theorem
NormedAddGroupHom.extension_unique
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[T0Space H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
{g : NormedAddGroupHom (UniformSpace.Completion G) H}
(hg : ∀ (v : G), f v = g ↑v)
:
f.extension = g