Documentation

Mathlib.Analysis.Normed.Group.NullSubmodule

The null subgroup in a seminormed commutative group #

For any SeminormedAddCommGroup M, the quotient SeparationQuotient M by the null subgroup is defined as a NormedAddCommGroup instance in Mathlib.Analysis.Normed.Group.Uniform. Here we define the null space as a subgroup.

Main definitions #

We use M to denote seminormed groups.

If E is a vector space over 𝕜 with an appropriate continuous action, we also define the null subspace as a submodule of E.

The null subgroup with respect to the norm.

Equations
  • nullSubgroup M = { carrier := {x : M | x = 0}, mul_mem' := , one_mem' := , inv_mem' := }
Instances For

    The additive null subgroup with respect to the norm.

    Equations
    Instances For
      @[simp]
      def nullSubmodule (𝕜 : Type u_2) (E : Type u_3) [SeminormedAddCommGroup E] [SeminormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
      Submodule 𝕜 E

      The null space with respect to the norm.

      Equations
      Instances For
        theorem isClosed_nullSubmodule {𝕜 : Type u_2} {E : Type u_3} [SeminormedAddCommGroup E] [SeminormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
        @[simp]
        theorem mem_nullSubmodule_iff {𝕜 : Type u_2} {E : Type u_3} [SeminormedAddCommGroup E] [SeminormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] {x : E} :