Properties of pointwise addition of sets in normed groups #
We explore the relationships between pointwise addition of sets in normed groups, and the norm. Notably, we show that the sum of bounded sets remain bounded.
theorem
Bornology.IsBounded.mul
{E : Type u_1}
[SeminormedGroup E]
{s t : Set E}
(hs : IsBounded s)
(ht : IsBounded t)
:
theorem
Bornology.IsBounded.add
{E : Type u_1}
[SeminormedAddGroup E]
{s t : Set E}
(hs : IsBounded s)
(ht : IsBounded t)
:
theorem
Bornology.IsBounded.of_mul
{E : Type u_1}
[SeminormedGroup E]
{s t : Set E}
(hst : IsBounded (s * t))
:
theorem
Bornology.IsBounded.of_add
{E : Type u_1}
[SeminormedAddGroup E]
{s t : Set E}
(hst : IsBounded (s + t))
:
theorem
Bornology.IsBounded.div
{E : Type u_1}
[SeminormedGroup E]
{s t : Set E}
(hs : IsBounded s)
(ht : IsBounded t)
:
theorem
Bornology.IsBounded.sub
{E : Type u_1}
[SeminormedAddGroup E]
{s t : Set E}
(hs : IsBounded s)
(ht : IsBounded t)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
IsCompact.mul_closedBall_one
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.add_closedBall_zero
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.div_closedBall_one
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.sub_closedBall_zero
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.closedBall_one_mul
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.closedBall_zero_add
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.closedBall_one_div
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.closedBall_zero_sub
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
:
theorem
IsCompact.mul_closedBall
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.add_closedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.div_closedBall
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.sub_closedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.closedBall_mul
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.closedBall_add
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.closedBall_div
{E : Type u_1}
[SeminormedCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
:
theorem
IsCompact.closedBall_sub
{E : Type u_1}
[SeminormedAddCommGroup E]
{δ : ℝ}
{s : Set E}
(hs : IsCompact s)
(hδ : 0 ≤ δ)
(x : E)
: