Diameters of sets in extended metric spaces #
The diameter of a set in a pseudoemetric space, named EMetric.diam
Equations
- EMetric.diam s = ⨆ x ∈ s, ⨆ y ∈ s, edist x y
Instances For
theorem
EMetric.diam_eq_sSup
{α : Type u_1}
[PseudoEMetricSpace α]
(s : Set α)
:
diam s = sSup (Set.image2 edist s s)
theorem
EMetric.edist_le_diam_of_mem
{α : Type u_1}
{s : Set α}
{x y : α}
[PseudoEMetricSpace α]
(hx : x ∈ s)
(hy : y ∈ s)
:
If two points belong to some set, their edistance is bounded by the diameter of the set
theorem
EMetric.diam_le
{α : Type u_1}
{s : Set α}
[PseudoEMetricSpace α]
{d : ENNReal}
(h : ∀ x ∈ s, ∀ y ∈ s, edist x y ≤ d)
:
If the distance between any two points in a set is bounded by some constant, this constant bounds the diameter.
theorem
EMetric.diam_subsingleton
{α : Type u_1}
{s : Set α}
[PseudoEMetricSpace α]
(hs : s.Subsingleton)
:
The diameter of a subsingleton vanishes.
@[simp]
The diameter of the empty set vanishes
@[simp]
The diameter of a singleton vanishes
theorem
EMetric.diam_iUnion_mem_option
{α : Type u_1}
[PseudoEMetricSpace α]
{ι : Type u_3}
(o : Option ι)
(s : ι → Set α)
:
The diameter is monotonous with respect to inclusion
theorem
EMetric.diam_closedBall
{α : Type u_1}
{x : α}
[PseudoEMetricSpace α]
{r : ENNReal}
:
diam (closedBall x r) ≤ 2 * r