Subgroups of normed (semi)groups #
In this file, we prove that subgroups of a normed (semi)group are also normed (semi)groups.
Tags #
normed group
Subgroups of normed groups #
A subgroup of a seminormed group is also a seminormed group, with the restriction of the norm.
Equations
A subgroup of a seminormed group is also a seminormed group, with the restriction of the norm.
Equations
If x
is an element of a subgroup s
of a seminormed group E
, its norm in s
is equal to
its norm in E
.
If x
is an element of a subgroup s
of a seminormed group E
, its
norm in s
is equal to its norm in E
.
If x
is an element of a subgroup s
of a seminormed group E
, its norm in s
is equal to
its norm in E
.
This is a reversed version of the simp
lemma Subgroup.coe_norm
for use by norm_cast
.
If x
is an element of a subgroup s
of a seminormed group E
,
its norm in s
is equal to its norm in E
.
This is a reversed version of the simp
lemma AddSubgroup.coe_norm
for use by norm_cast
.
Equations
Equations
Equations
- Subgroup.normedGroup = NormedGroup.induced (↥s) E s.subtype ⋯
Equations
- AddSubgroup.normedAddGroup = NormedAddGroup.induced (↥s) E s.subtype ⋯
Equations
- Subgroup.normedCommGroup = NormedCommGroup.induced (↥s) E s.subtype ⋯
Equations
Subgroup classes of normed groups #
A subgroup of a seminormed group is also a seminormed group, with the restriction of the norm.
Equations
- SubgroupClass.seminormedGroup s = SeminormedGroup.induced (↥s) E ↑s
A subgroup of a seminormed additive group is also a seminormed additive group, with the restriction of the norm.
Equations
If x
is an element of a subgroup s
of a seminormed group E
, its norm in s
is equal to
its norm in E
.
If x
is an element of an additive subgroup s
of a seminormed
additive group E
, its norm in s
is equal to its norm in E
.
Equations
Equations
Equations
- SubgroupClass.normedGroup s = NormedGroup.induced (↥s) E ↑s ⋯
Equations
- AddSubgroupClass.normedAddGroup s = NormedAddGroup.induced (↥s) E ↑s ⋯
Equations
- SubgroupClass.normedCommGroup s = NormedCommGroup.induced (↥s) E ↑s ⋯
Equations
- AddSubgroupClass.normedAddCommGroup s = NormedAddCommGroup.induced (↥s) E ↑s ⋯